论文研究-基于鲁棒高斯混合模型的加速EM算法研究.pdf

上传者: 39841882 | 上传时间: 2022-01-26 10:26:43 | 文件大小: 1.13MB | 文件类型: -
针对传统鲁棒高斯混合模型EM算法存在模型成分参数难以精确获取最优解以及收敛速度随样本数量的增加而快速降低等问题,提出了一种基于鲁棒高斯混合模型的加速EM算法。该算法采用隐含参量信息熵原理对高斯模型分量个数进行挑选,以及使用Aitken加速方法减少算法的迭代次数,当接近最优解时,EM步长的变化极为缓慢,这时使用Broyden对称秩1校正公式进行校正,使算法快速收敛,从而能够在很少的迭代次数内精确获取高斯混合模型的模型成分数。该算法通过与传统鲁棒EM算法和无监督的EM算法的聚类结果进行比较,实验证明该算法对初始值的设定并不敏感(成分数c无须预先设定),并且能够降低算法运算时间,提高聚类模型成分数(类簇)的正确率。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明