Python-在PyTorch中实现不同的基于VAE的半监督和生成模型

上传者: 39841856 | 上传时间: 2021-07-07 14:58:23 | 文件大小: 1.67MB | 文件类型: ZIP
在PyTorch中实现不同的基于VAE的半监督和生成模型

文件下载

资源详情

[{"title":"( 30 个子文件 1.67MB ) Python-在PyTorch中实现不同的基于VAE的半监督和生成模型","children":[{"title":"semi-supervised-pytorch-master","children":[{"title":"examples","children":[{"title":"betavae.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"notebooks","children":[{"title":"Variational Autoencoder.ipynb <span style='color:#111;'> 13.31KB </span>","children":null,"spread":false},{"title":"Ladder Deep Generative Model.ipynb <span style='color:#111;'> 41.60KB </span>","children":null,"spread":false},{"title":"Ladder Variational Autoencoder.ipynb <span style='color:#111;'> 38.03KB </span>","children":null,"spread":false},{"title":"Auxiliary Deep Generative Model.ipynb <span style='color:#111;'> 40.65KB </span>","children":null,"spread":false},{"title":"Gumbel Softmax.ipynb <span style='color:#111;'> 91.99KB </span>","children":null,"spread":false},{"title":"Beta Variational Autoencoder.ipynb <span style='color:#111;'> 60.38KB </span>","children":null,"spread":false},{"title":"Deep Generative Model.ipynb <span style='color:#111;'> 44.14KB </span>","children":null,"spread":false},{"title":"datautils.py <span style='color:#111;'> 3.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"images","children":[{"title":"gvae.png <span style='color:#111;'> 27.18KB </span>","children":null,"spread":false},{"title":"conditional.png <span style='color:#111;'> 1.18MB </span>","children":null,"spread":false},{"title":"adgm.png <span style='color:#111;'> 65.56KB </span>","children":null,"spread":false},{"title":"dgm.png <span style='color:#111;'> 43.99KB </span>","children":null,"spread":false},{"title":"ladderdgm.png <span style='color:#111;'> 84.65KB </span>","children":null,"spread":false},{"title":"vae.png <span style='color:#111;'> 28.14KB </span>","children":null,"spread":false},{"title":"ladder.png <span style='color:#111;'> 51.42KB </span>","children":null,"spread":false}],"spread":true},{"title":"mnist_sslvae.py <span style='color:#111;'> 7.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE.md <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"semi-supervised","children":[{"title":"layers","children":[{"title":"stochastic.py <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"flow.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"vae.py <span style='color:#111;'> 10.56KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 215B </span>","children":null,"spread":false},{"title":"dgm.py <span style='color:#111;'> 8.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"utils.py <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"inference","children":[{"title":"variational.py <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 165B </span>","children":null,"spread":false},{"title":"distributions.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":".gitignore <span style='color:#111;'> 76B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明