Python-tensorflow2中文教程

上传者: 39841856 | 上传时间: 2021-04-20 13:44:48 | 文件大小: 4.74MB | 文件类型: ZIP
本教程主要由tensorflow2.0官方教程的个人学习复现笔记整理而来,并借鉴了一些keras构造神经网络的方法,中文讲解,方便喜欢阅读中文教程的朋友

文件下载

资源详情

[{"title":"( 52 个子文件 4.74MB ) Python-tensorflow2中文教程","children":[{"title":"tensorflow2_tutorials_chinese-master","children":[{"title":"020-Eager","children":[{"title":"001-Tensor_and_operations.ipynb <span style='color:#111;'> 9.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"104-example_classify_structured_data.ipynb <span style='color:#111;'> 24.74KB </span>","children":null,"spread":false},{"title":"003-keras_training_and_evaluation.ipynb <span style='color:#111;'> 105.06KB </span>","children":null,"spread":false},{"title":"005-keras_saving_and_serializing_model.ipynb <span style='color:#111;'> 11.57KB </span>","children":null,"spread":false},{"title":"105-example_regression.ipynb <span style='color:#111;'> 251.44KB </span>","children":null,"spread":false},{"title":"026-Transformer","children":[{"title":"001-Transformer.ipynb <span style='color:#111;'> 103.00KB </span>","children":null,"spread":false},{"title":"Transformer.ipynb <span style='color:#111;'> 107.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"032-Text","children":[{"title":".ipynb_checkpoints","children":[{"title":"001-word_embeddings-checkpoint.ipynb <span style='color:#111;'> 168.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"002-text_classification_with_RNN.ipynb <span style='color:#111;'> 92.99KB </span>","children":null,"spread":false},{"title":"001-word_embeddings.ipynb <span style='color:#111;'> 168.15KB </span>","children":null,"spread":false},{"title":"meta.tsv <span style='color:#111;'> 74.38KB </span>","children":null,"spread":false},{"title":"vecs.tsv <span style='color:#111;'> 1.74MB </span>","children":null,"spread":false}],"spread":true},{"title":"008-AutoGraph.ipynb <span style='color:#111;'> 15.78KB </span>","children":null,"spread":false},{"title":"023-RNN","children":[{"title":".ipynb_checkpoints","children":[{"title":"002-rnn_variance-checkpoint.ipynb <span style='color:#111;'> 52.79KB </span>","children":null,"spread":false},{"title":"003-cnn_rnn-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":true},{"title":"003-cnn_rnn.ipynb <span style='color:#111;'> 49.09KB </span>","children":null,"spread":false},{"title":"002-rnn_variance.ipynb <span style='color:#111;'> 52.79KB </span>","children":null,"spread":false}],"spread":true},{"title":"002-keras_function.ipynb <span style='color:#111;'> 380.12KB </span>","children":null,"spread":false},{"title":"106-example_save_and_restore_models.ipynb <span style='color:#111;'> 21.38KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"025-GAN","children":[{"title":".ipynb_checkpoints","children":[{"title":"002-DCGAN-checkpoint.ipynb <span style='color:#111;'> 21.35KB </span>","children":null,"spread":false}],"spread":false},{"title":"002-DCGAN.ipynb <span style='color:#111;'> 604.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"022-CNN","children":[{"title":".ipynb_checkpoints","children":[{"title":"003-text_cnn-checkpoint.ipynb <span style='color:#111;'> 41.60KB </span>","children":null,"spread":false},{"title":"004-pretrained_cnn-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"002-cnn_variants-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"001-cnn-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":false},{"title":"001-cnn.ipynb <span style='color:#111;'> 26.27KB </span>","children":null,"spread":false},{"title":"004-pretrained_cnn.ipynb <span style='color:#111;'> 454.43KB </span>","children":null,"spread":false},{"title":"003-text_cnn.ipynb <span style='color:#111;'> 41.60KB </span>","children":null,"spread":false},{"title":"002-cnn_variants.ipynb <span style='color:#111;'> 68.42KB </span>","children":null,"spread":false},{"title":"dog.jpg <span style='color:#111;'> 38.32KB </span>","children":null,"spread":false}],"spread":false},{"title":"101-example_image_classification.ipynb <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false},{"title":"004-keras_write_layers_from_scratch.ipynb <span style='color:#111;'> 21.87KB </span>","children":null,"spread":false},{"title":"021-MLP","children":[{"title":".ipynb_checkpoints","children":[{"title":"001-MLP-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"002-MLP2-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":false},{"title":"002-MLP2.ipynb <span style='color:#111;'> 136.21KB </span>","children":null,"spread":false},{"title":"001-MLP.ipynb <span style='color:#111;'> 17.34KB </span>","children":null,"spread":false}],"spread":false},{"title":"102-example_text_classification.ipynb <span style='color:#111;'> 48.55KB </span>","children":null,"spread":false},{"title":"024-AutoEncoder","children":[{"title":".ipynb_checkpoints","children":[{"title":"001-autoencoder-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"002-cnn_autoencoder-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":false},{"title":"001-autoencoder.ipynb <span style='color:#111;'> 86.79KB </span>","children":null,"spread":false},{"title":"002-cnn_autoencoder.ipynb <span style='color:#111;'> 77.69KB </span>","children":null,"spread":false},{"title":"model.png <span style='color:#111;'> 46.39KB </span>","children":null,"spread":false}],"spread":false},{"title":".gitignore <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"006-eager_execution.ipynb <span style='color:#111;'> 17.73KB </span>","children":null,"spread":false},{"title":"033-Estimators","children":[{"title":".ipynb_checkpoints","children":[{"title":"001-boosted_trees-checkpoint.ipynb <span style='color:#111;'> 72.71KB </span>","children":null,"spread":false}],"spread":false},{"title":"001-boosted_trees.ipynb <span style='color:#111;'> 72.71KB </span>","children":null,"spread":false}],"spread":false},{"title":"007-Variables.ipynb <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"001-keras_overview.ipynb <span style='color:#111;'> 29.59KB </span>","children":null,"spread":false},{"title":"103-example_overfitting_and_underfitting.ipynb <span style='color:#111;'> 241.81KB </span>","children":null,"spread":false},{"title":"031-Image","children":[{"title":".ipynb_checkpoints","children":[{"title":"001-image_classification-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":false},{"title":"001-image_classification.ipynb <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明