Python-Keras实现实时语义分割的深层神经网络架构ENET

上传者: 39841856 | 上传时间: 2020-03-10 03:14:11 | 文件大小: 72KB | 文件类型: zip
Keras实现实时语义分割的深层神经网络架构ENET

文件下载

资源详情

[{"title":"( 58 个子文件 72KB ) Python-Keras实现实时语义分割的深层神经网络架构ENET","children":[{"title":"PavlosMelissinos-enet-keras-168b7e0","children":[{"title":"experiments","children":[{"title":"README.md <span style='color:#111;'> 291B </span>","children":null,"spread":false}],"spread":true},{"title":"src","children":[{"title":"experiments","children":[{"title":"__init__.py <span style='color:#111;'> 35B </span>","children":null,"spread":false},{"title":"core.py <span style='color:#111;'> 13.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"enet_naive_upsampling","children":[{"title":"model.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 15B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"encoder.py <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"decoder.py <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"enet_unpooling","children":[{"title":"model.py <span style='color:#111;'> 4.51KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"encoder.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"decoder.py <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"layers","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"pooling.py <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"core.py <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"from_torch.py <span style='color:#111;'> 2.73KB </span>","children":null,"spread":false},{"title":"objectives.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 621B </span>","children":null,"spread":false},{"title":"icnet","children":[{"title":"model.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"encoder.py <span style='color:#111;'> 9.24KB </span>","children":null,"spread":false},{"title":"decoder.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"test.py <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false},{"title":"evaluation","children":[{"title":"evalCOCO.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 15B </span>","children":null,"spread":false}],"spread":true},{"title":"run.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 15B </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"utils.py <span style='color:#111;'> 8.35KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 23.91KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 15B </span>","children":null,"spread":false},{"title":"coco_extract_labels.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"pycocotools","children":[{"title":"common","children":[{"title":"maskApi.h <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"maskApi.c <span style='color:#111;'> 8.06KB </span>","children":null,"spread":false}],"spread":false},{"title":"mask.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"coco.py <span style='color:#111;'> 17.87KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"_mask.pyx <span style='color:#111;'> 11.17KB </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 724B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 199B </span>","children":null,"spread":false},{"title":"cocoeval.py <span style='color:#111;'> 23.30KB </span>","children":null,"spread":false}],"spread":false},{"title":"data_loader.py <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 346B </span>","children":null,"spread":false},{"title":"train.sh <span style='color:#111;'> 153B </span>","children":null,"spread":false},{"title":"predict.sh <span style='color:#111;'> 62B </span>","children":null,"spread":false},{"title":"config","children":[{"title":"solver.json.default <span style='color:#111;'> 664B </span>","children":null,"spread":false},{"title":"evaluation.json.default <span style='color:#111;'> 182B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 477B </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"environment.yml <span style='color:#111;'> 726B </span>","children":null,"spread":false},{"title":"test.sh <span style='color:#111;'> 126B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"README.md <span style='color:#111;'> 51B </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"setup.sh <span style='color:#111;'> 221B </span>","children":null,"spread":false},{"title":"pretrained","children":[{"title":"README.md <span style='color:#111;'> 244B </span>","children":null,"spread":false}],"spread":false},{"title":"overfit.sh <span style='color:#111;'> 161B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明