[{"title":"( 46 个子文件 28.65MB ) Python-用于物体跟踪的全卷积连体网络SiameseFC的Pytorch实现","children":[{"title":"Pytorch-SiamFC-master","children":[{"title":"vis_app.py <span style='color:#111;'> 5.76KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 25.09KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"exceptions.py <span style='color:#111;'> 888B </span>","children":null,"spread":false},{"title":"bbox_transforms.py <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"crops.py <span style='color:#111;'> 5.48KB </span>","children":null,"spread":false},{"title":"colormaps.py <span style='color:#111;'> 4.81KB </span>","children":null,"spread":false},{"title":"visualization.py <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"profiling.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"tensor_conv.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"load_baseline.py <span style='color:#111;'> 8.20KB </span>","children":null,"spread":false},{"title":"color_tables","children":[{"title":"inferno.py <span style='color:#111;'> 13.85KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 63B </span>","children":null,"spread":false},{"title":"viridis.py <span style='color:#111;'> 10.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"image_utils.py <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false}],"spread":true},{"title":"profile_script.sh <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"images","children":[{"title":"second_line.png <span style='color:#111;'> 376.69KB </span>","children":null,"spread":false},{"title":"results_train.png <span style='color:#111;'> 86.65KB </span>","children":null,"spread":false},{"title":"scalars.png <span style='color:#111;'> 75.56KB </span>","children":null,"spread":false},{"title":"quick_train_screen.gif <span style='color:#111;'> 646.45KB </span>","children":null,"spread":false},{"title":"correlation_better.gif <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"train_screen.png <span style='color:#111;'> 123.99KB </span>","children":null,"spread":false},{"title":"viz_app.gif <span style='color:#111;'> 11.31MB </span>","children":null,"spread":false},{"title":"third_line.png <span style='color:#111;'> 17.98KB </span>","children":null,"spread":false},{"title":"first_line.png <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"pairs.png <span style='color:#111;'> 360.61KB </span>","children":null,"spread":false},{"title":"schema.png <span style='color:#111;'> 160.14KB </span>","children":null,"spread":false},{"title":"catpair.png <span style='color:#111;'> 115.05KB </span>","children":null,"spread":false}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 18.63KB </span>","children":null,"spread":false},{"title":"appSiamFC","children":[{"title":"display.py <span style='color:#111;'> 7.81KB </span>","children":null,"spread":false},{"title":"app_utils.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"producer.py <span style='color:#111;'> 10.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"training","children":[{"title":"experiments","children":[{"title":"default","children":[{"title":"parameters.json <span style='color:#111;'> 459B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"crops_train.py <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"labels.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 22.58KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 11.88KB </span>","children":null,"spread":false},{"title":"optim.py <span style='color:#111;'> 262B </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"losses.py <span style='color:#111;'> 947B </span>","children":null,"spread":false},{"title":"train_utils.py <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false},{"title":"summary_utils.py <span style='color:#111;'> 9.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"BaselinePretrained.pth.tar <span style='color:#111;'> 14.89MB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"setup.sh <span style='color:#111;'> 534B </span>","children":null,"spread":false},{"title":"environment.yaml <span style='color:#111;'> 3.75KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]