论文研究-基于蜜罐的入侵检测系统的设计与实现.pdf

上传者: 39841365 | 上传时间: 2021-06-01 11:01:36 | 文件大小: 422KB | 文件类型: PDF
传统的入侵检测系统无法识别未知的攻击,提出在入侵检测系统中引入蜜罐技术来弥补其不足,并设计和实现了一个基于人工神经网络的入侵检测系统HoneypotIDS。该系统应用感知器学习方法构建FDM检测模型和SDM检测模型两阶段检测模型来对入侵行为进行检测。其中,FDM检测模型用于划分正常类和攻击类,SDM检测模型则在此基础上对一些具体的攻击类型进行识别。最后,设计实验对HoneypotIDS的检测能力进行了测试。实验结果表明,HoneypotIDS对被监控网络中的入侵行为具有较好的检测率和较低的误报率。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明