Python-深度强化学习PyTorch实现集锦

上传者: 39841365 | 上传时间: 2021-09-24 19:57:52 | 文件大小: 3.79MB | 文件类型: ZIP
This repository contains most of classic deep reinforcement learning algorithms, including - DQN, DDPG, A3C, PPO, TRPO. (More algorithms are still in progress)

文件下载

资源详情

[{"title":"( 64 个子文件 3.79MB ) Python-深度强化学习PyTorch实现集锦","children":[{"title":"reinforcement-learning-algorithms-master","children":[{"title":".gitignore <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.49KB </span>","children":null,"spread":false},{"title":"05_ppo","children":[{"title":"ppo_agent.py <span style='color:#111;'> 10.88KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 751B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 757B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"arguments.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"01_dqn_algos","children":[{"title":"README.md <span style='color:#111;'> 434B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 589B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"dqn_agent.py <span style='color:#111;'> 5.51KB </span>","children":null,"spread":false},{"title":"arguments.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"rl_utils","children":[{"title":"mpi_utils","children":[{"title":"utils.py <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"normalizer.py <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"logger","children":[{"title":"plot.py <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 14.46KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"bench.py <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"running_filter","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"running_filter.py <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"seeds","children":[{"title":"seeds.py <span style='color:#111;'> 407B </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"env_wrapper","children":[{"title":"multi_envs_wrapper.py <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"create_env.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"frame_stack.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"atari_wrapper.py <span style='color:#111;'> 10.09KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 5.74KB </span>","children":null,"spread":false}],"spread":true},{"title":"experience_replay","children":[{"title":"experience_replay.py <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"04_trpo","children":[{"title":"trpo_agent.py <span style='color:#111;'> 9.08KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 258B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 461B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"arguments.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"figures","children":[{"title":"04_trpo.png <span style='color:#111;'> 141.83KB </span>","children":null,"spread":false},{"title":"logo.png <span style='color:#111;'> 12.62KB </span>","children":null,"spread":false},{"title":"breakout.gif <span style='color:#111;'> 451.78KB </span>","children":null,"spread":false},{"title":"01_dqn.png <span style='color:#111;'> 233.10KB </span>","children":null,"spread":false},{"title":"hopper.gif <span style='color:#111;'> 1.79MB </span>","children":null,"spread":false},{"title":"03_a2c.png <span style='color:#111;'> 164.86KB </span>","children":null,"spread":false},{"title":"05_ppo.png <span style='color:#111;'> 130.17KB </span>","children":null,"spread":false},{"title":"02_ddpg.png <span style='color:#111;'> 135.88KB </span>","children":null,"spread":false},{"title":"bipedal.gif <span style='color:#111;'> 815.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"setup.py <span style='color:#111;'> 275B </span>","children":null,"spread":false},{"title":"02_ddpg","children":[{"title":"README.md <span style='color:#111;'> 351B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 950B </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 717B </span>","children":null,"spread":false},{"title":"ddpg_agent.py <span style='color:#111;'> 8.63KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"arguments.py <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"03_a2c","children":[{"title":"README.md <span style='color:#111;'> 266B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 612B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 749B </span>","children":null,"spread":false},{"title":"a2c_agent.py <span style='color:#111;'> 6.22KB </span>","children":null,"spread":false},{"title":"arguments.py <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

  • weixin_39559994 :
    都是github里面的代码,别人的劳动成果
    2021-02-17

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明