Python-支持数据和机器学习模型的可解释性工具包

上传者: 39840924 | 上传时间: 2023-04-04 22:58:10 | 文件大小: 14.28MB | 文件类型: ZIP
Open Source library to support interpretability and explainability of data and machine learning models

文件下载

资源详情

[{"title":"( 159 个子文件 14.28MB ) Python-支持数据和机器学习模型的可解释性工具包","children":[{"title":"make.bat <span style='color:#111;'> 795B </span>","children":null,"spread":false},{"title":"checkpoint <span style='color:#111;'> 304B </span>","children":null,"spread":false},{"title":"checkpoint <span style='color:#111;'> 89B </span>","children":null,"spread":false},{"title":"Retention.csv <span style='color:#111;'> 297.73KB </span>","children":null,"spread":false},{"title":"train_resnetmodel_new_799.ckpt.data-00000-of-00001 <span style='color:#111;'> 3.56MB </span>","children":null,"spread":false},{"title":"train_resnetmodel_new1_799.ckpt.data-00000-of-00001 <span style='color:#111;'> 1.79MB </span>","children":null,"spread":false},{"title":"probe_model_run1.data-00000-of-00001 <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"methods-choice.gif <span style='color:#111;'> 445.07KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"mnist_AE_1_decoder.h5 <span style='color:#111;'> 43.96KB </span>","children":null,"spread":false},{"title":"heloc_nnsmall.h5 <span style='color:#111;'> 12.86KB </span>","children":null,"spread":false},{"title":"train_resnetmodel_new_799.ckpt.index <span style='color:#111;'> 15.48KB </span>","children":null,"spread":false},{"title":"train_resnetmodel_new1_799.ckpt.index <span style='color:#111;'> 11.38KB </span>","children":null,"spread":false},{"title":"probe_model_run1.index <span style='color:#111;'> 242B </span>","children":null,"spread":false},{"title":"dermoscopy.ipynb <span style='color:#111;'> 2.71MB </span>","children":null,"spread":false},{"title":"metrics test.ipynb <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"Prof-Weight.ipynb <span style='color:#111;'> 960.32KB </span>","children":null,"spread":false},{"title":"HELOC.ipynb <span style='color:#111;'> 881.90KB </span>","children":null,"spread":false},{"title":"CDC.ipynb <span style='color:#111;'> 778.70KB </span>","children":null,"spread":false},{"title":"CEM-MAF-CelebA.ipynb <span style='color:#111;'> 284.65KB </span>","children":null,"spread":false},{"title":"MEPS.ipynb <span style='color:#111;'> 261.54KB </span>","children":null,"spread":false},{"title":"DIPVAE-FMNIST.ipynb <span style='color:#111;'> 230.29KB </span>","children":null,"spread":false},{"title":"Protodash-CDC.ipynb <span style='color:#111;'> 82.52KB </span>","children":null,"spread":false},{"title":"breast-cancer-logistic.ipynb <span style='color:#111;'> 68.24KB </span>","children":null,"spread":false},{"title":"boston-linear.ipynb <span style='color:#111;'> 59.91KB </span>","children":null,"spread":false},{"title":"CEM-MNIST.ipynb <span style='color:#111;'> 41.93KB </span>","children":null,"spread":false},{"title":"retention.ipynb <span style='color:#111;'> 23.40KB </span>","children":null,"spread":false},{"title":"attrition.ipynb <span style='color:#111;'> 23.27KB </span>","children":null,"spread":false},{"title":"breast-cancer-br.ipynb <span style='color:#111;'> 20.35KB </span>","children":null,"spread":false},{"title":"mnist.json <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"mnist_AE_1_decoder.json <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"linear_plot_data.json <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"logistic_plot_data.json <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 634B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.69KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"MAINTAINERS.md <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":"train_resnetmodel_new_799.ckpt.meta <span style='color:#111;'> 2.45MB </span>","children":null,"spread":false},{"title":"train_resnetmodel_new1_799.ckpt.meta <span style='color:#111;'> 2.27MB </span>","children":null,"spread":false},{"title":"probe_model_run1.meta <span style='color:#111;'> 26.16KB </span>","children":null,"spread":false},{"title":"mnist <span style='color:#111;'> 2.43MB </span>","children":null,"spread":false},{"title":"probe_2_out_pred15.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred6.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred0.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred1.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred12.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred3.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred2.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred4.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred11.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred8.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred7.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred10.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred14.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred9.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred16.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred5.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"probe_2_out_pred13.npy <span style='color:#111;'> 781.38KB </span>","children":null,"spread":false},{"title":"CEM_MAF_aen_PP.py <span style='color:#111;'> 23.71KB </span>","children":null,"spread":false},{"title":"logistic_regression.py <span style='color:#111;'> 19.34KB </span>","children":null,"spread":false},{"title":"CEM_MAF_aen_PN.py <span style='color:#111;'> 17.49KB </span>","children":null,"spread":false},{"title":"linear_regression.py <span style='color:#111;'> 17.35KB </span>","children":null,"spread":false},{"title":"GenerateData.py <span style='color:#111;'> 16.92KB </span>","children":null,"spread":false},{"title":"CEM_aen.py <span style='color:#111;'> 14.66KB </span>","children":null,"spread":false},{"title":"beam_search.py <span style='color:#111;'> 12.72KB </span>","children":null,"spread":false},{"title":"dipvae_utils.py <span style='color:#111;'> 12.71KB </span>","children":null,"spread":false},{"title":"train_tutorial_dermatology_models.py <span style='color:#111;'> 11.28KB </span>","children":null,"spread":false},{"title":"CEM_MAF.py <span style='color:#111;'> 10.68KB </span>","children":null,"spread":false},{"title":"resnet_keras_model.py <span style='color:#111;'> 10.09KB </span>","children":null,"spread":false},{"title":"boolean_rule_cg.py <span style='color:#111;'> 9.32KB </span>","children":null,"spread":false},{"title":"PDASH_utils.py <span style='color:#111;'> 8.64KB </span>","children":null,"spread":false},{"title":"profwt.py <span style='color:#111;'> 7.86KB </span>","children":null,"spread":false},{"title":"features.py <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false},{"title":"dipvae.py <span style='color:#111;'> 6.71KB </span>","children":null,"spread":false},{"title":"train_probes.py <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"cifar_dataset.py <span style='color:#111;'> 5.75KB </span>","children":null,"spread":false},{"title":"cdc_dataset.py <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false},{"title":"TED_Cartesian.py <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false},{"title":"test_CEM_MAF.py <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"heloc_dataset.py <span style='color:#111;'> 4.28KB </span>","children":null,"spread":false},{"title":"meps_dataset.py <span style='color:#111;'> 4.00KB </span>","children":null,"spread":false},{"title":"CEM.py <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"test_Linear_Rule_Regression.py <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"dwnld_CEM_MAF_celebA.py <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"local_metrics.py <span style='color:#111;'> 3.73KB </span>","children":null,"spread":false},{"title":"GLRM.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"test_CEM.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"test_DIPVAE.py <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"CEM_MAF_utils.py <span style='color:#111;'> 3.31KB </span>","children":null,"spread":false},{"title":"attach_probe_checkpoint.py <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"ted_dataset.py <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"classifiers.py <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"test_Logistic_Rule_Regression.py <span style='color:#111;'> 2.68KB </span>","children":null,"spread":false},{"title":"test_TED_Cartesian.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明