Python-pytorch中的基础预训练模型和数据集

上传者: 39840650 | 上传时间: 2019-12-21 21:40:32 | 文件大小: 38KB | 文件类型: zip
pytorch中的基础预训练模型和数据集 (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

文件下载

资源详情

[{"title":"( 33 个子文件 38KB ) Python-pytorch中的基础预训练模型和数据集","children":[{"title":"pytorch-playground-master","children":[{"title":"quantize.py <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"stl10","children":[{"title":"train.py <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"cifar","children":[{"title":"train.py <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"svhn","children":[{"title":"train.py <span style='color:#111;'> 5.46KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":"script","children":[{"title":"convert.py <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"utee","children":[{"title":"misc.py <span style='color:#111;'> 7.54KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"selector.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"quant.py <span style='color:#111;'> 6.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"imagenet","children":[{"title":"vgg.py <span style='color:#111;'> 4.40KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"inception.py <span style='color:#111;'> 11.61KB </span>","children":null,"spread":false},{"title":"squeezenet.py <span style='color:#111;'> 4.90KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false},{"title":"alexnet.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"mnist","children":[{"title":"train.py <span style='color:#111;'> 5.38KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 35B </span>","children":null,"spread":false},{"title":"roadmap_zh.md <span style='color:#111;'> 4.31KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • qq_38144495 :
    别下载了,骗人的,这些代码谁没有?您几十k放什么数据集?[face]emoji:032.png[/face]
    2021-08-11
  • qq_38144495 :
    别下载了,骗人的,这些代码谁没有?您几十k放什么数据集?[face]emoji:032.png[/face]
    2021-08-11

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明