cpp-用C和CUDA实现CNN

上传者: 39840387 | 上传时间: 2021-05-14 09:42:55 | 文件大小: 12.4MB | 文件类型: ZIP
卷积神经网络的各种版本实现(CPU,CUDA_NAIVE,CUDA_TILED,GEMM)

文件下载

资源详情

[{"title":"( 52 个子文件 12.4MB ) cpp-用C和CUDA实现CNN","children":[{"title":"CUDA_CNN-master","children":[{"title":"Net_GPU_test.cu <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"Release","children":[{"title":"Net_GPU_Tiled.o <span style='color:#111;'> 205.77KB </span>","children":null,"spread":false},{"title":"sources.mk <span style='color:#111;'> 550B </span>","children":null,"spread":false},{"title":"Net_GPU_Tiled.d <span style='color:#111;'> 63.97KB </span>","children":null,"spread":false},{"title":"subdir.mk <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"Net_GPU_test.d <span style='color:#111;'> 63.97KB </span>","children":null,"spread":false},{"title":"FullyConnect.o <span style='color:#111;'> 279.59KB </span>","children":null,"spread":false},{"title":"FullyConnect.d <span style='color:#111;'> 63.97KB </span>","children":null,"spread":false},{"title":"objects.mk <span style='color:#111;'> 231B </span>","children":null,"spread":false},{"title":"Softmax.d <span style='color:#111;'> 63.96KB </span>","children":null,"spread":false},{"title":"Functions.o <span style='color:#111;'> 352.99KB </span>","children":null,"spread":false},{"title":"CNN <span style='color:#111;'> 1.46MB </span>","children":null,"spread":false},{"title":"Net_cpu.d <span style='color:#111;'> 63.96KB </span>","children":null,"spread":false},{"title":"Pool.d <span style='color:#111;'> 63.96KB </span>","children":null,"spread":false},{"title":"Mnist.d <span style='color:#111;'> 63.96KB </span>","children":null,"spread":false},{"title":"Convolution.d <span style='color:#111;'> 63.97KB </span>","children":null,"spread":false},{"title":"Convolution.o <span style='color:#111;'> 319.82KB </span>","children":null,"spread":false},{"title":"Net_GPU_Gemm.d <span style='color:#111;'> 63.97KB </span>","children":null,"spread":false},{"title":"Net_GPU_Naive.o <span style='color:#111;'> 205.46KB </span>","children":null,"spread":false},{"title":"Net_cpu.o <span style='color:#111;'> 204.25KB </span>","children":null,"spread":false},{"title":"makefile <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":"nsightbuilddata <span style='color:#111;'> 416B </span>","children":null,"spread":false},{"title":"Net_GPU_Gemm.o <span style='color:#111;'> 205.42KB </span>","children":null,"spread":false},{"title":"Softmax.o <span style='color:#111;'> 16.28KB </span>","children":null,"spread":false},{"title":"Pool.o <span style='color:#111;'> 254.56KB </span>","children":null,"spread":false},{"title":"Net_GPU_test.o <span style='color:#111;'> 206.44KB </span>","children":null,"spread":false},{"title":"Mnist.o <span style='color:#111;'> 24.09KB </span>","children":null,"spread":false},{"title":"Net_GPU_Naive.d <span style='color:#111;'> 63.97KB </span>","children":null,"spread":false},{"title":"Functions.d <span style='color:#111;'> 63.96KB </span>","children":null,"spread":false}],"spread":false},{"title":"mnist","children":[{"title":"t10k-labels-idx1-ubyte <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"text_out_lenet5.txt <span style='color:#111;'> 901.48KB </span>","children":null,"spread":false},{"title":"train-images-idx3-ubyte <span style='color:#111;'> 44.86MB </span>","children":null,"spread":false},{"title":"t10k-images-idx3-ubyte <span style='color:#111;'> 7.48MB </span>","children":null,"spread":false},{"title":"train-labels-idx1-ubyte <span style='color:#111;'> 58.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"Functions.cu <span style='color:#111;'> 17.70KB </span>","children":null,"spread":false},{"title":"Pool.cu <span style='color:#111;'> 10.22KB </span>","children":null,"spread":false},{"title":"text_out_lenet5.txt <span style='color:#111;'> 901.48KB </span>","children":null,"spread":false},{"title":"Net_cpu.cu <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"Net_GPU_Naive.cu <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"Net_GPU_Tiled.cu <span style='color:#111;'> 5.37KB </span>","children":null,"spread":false},{"title":"Net_GPU_Gemm.cu <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":".settings","children":[{"title":"org.eclipse.cdt.codan.core.prefs <span style='color:#111;'> 9.61KB </span>","children":null,"spread":false},{"title":"org.eclipse.cdt.core.prefs <span style='color:#111;'> 108B </span>","children":null,"spread":false}],"spread":true},{"title":".project <span style='color:#111;'> 804B </span>","children":null,"spread":false},{"title":".cproject <span style='color:#111;'> 13.97KB </span>","children":null,"spread":false},{"title":"FullyConnect.cu <span style='color:#111;'> 3.73KB </span>","children":null,"spread":false},{"title":"Convolution.cu <span style='color:#111;'> 14.48KB </span>","children":null,"spread":false},{"title":"Net_h.h <span style='color:#111;'> 13.04KB </span>","children":null,"spread":false},{"title":"Mnist.cu <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"Softmax.cu <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"flag_option <span style='color:#111;'> 11B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明