Python-Pytorch实现深度行人重新识别方法

上传者: 39840387 | 上传时间: 2021-03-14 17:22:38 | 文件大小: 359KB | 文件类型: ZIP
Pytorch实现深度行人重新识别方法

文件下载

资源详情

[{"title":"( 97 个子文件 359KB ) Python-Pytorch实现深度行人重新识别方法","children":[{"title":"KaiyangZhou-deep-person-reid-d5863e0","children":[{"title":"README.rst <span style='color:#111;'> 7.49KB </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"pkg","children":[{"title":"losses.rst <span style='color:#111;'> 232B </span>","children":null,"spread":false},{"title":"optim.rst <span style='color:#111;'> 259B </span>","children":null,"spread":false},{"title":"data.rst <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"models.rst <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"utils.rst <span style='color:#111;'> 530B </span>","children":null,"spread":false},{"title":"metrics.rst <span style='color:#111;'> 297B </span>","children":null,"spread":false},{"title":"engine.rst <span style='color:#111;'> 500B </span>","children":null,"spread":false}],"spread":true},{"title":"datasets.rst <span style='color:#111;'> 8.85KB </span>","children":null,"spread":false},{"title":"figures","children":[{"title":"actmap.jpg <span style='color:#111;'> 29.19KB </span>","children":null,"spread":false},{"title":"ranked_results.jpg <span style='color:#111;'> 186.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"user_guide.rst <span style='color:#111;'> 12.20KB </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"AWESOME_REID.md <span style='color:#111;'> 4.66KB </span>","children":null,"spread":false},{"title":"evaluation.rst <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 580B </span>","children":null,"spread":false},{"title":"MODEL_ZOO.md <span style='color:#111;'> 8.31KB </span>","children":null,"spread":false},{"title":"index.rst <span style='color:#111;'> 426B </span>","children":null,"spread":false}],"spread":true},{"title":"environment.yml <span style='color:#111;'> 112B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 60B </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"scripts","children":[{"title":"main.py <span style='color:#111;'> 4.26KB </span>","children":null,"spread":false},{"title":"default_parser.py <span style='color:#111;'> 13.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"torchreid","children":[{"title":"models","children":[{"title":"nasnet.py <span style='color:#111;'> 30.61KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 14.21KB </span>","children":null,"spread":false},{"title":"densenet.py <span style='color:#111;'> 10.34KB </span>","children":null,"spread":false},{"title":"osnet.py <span style='color:#111;'> 12.01KB </span>","children":null,"spread":false},{"title":"inceptionv4.py <span style='color:#111;'> 10.72KB </span>","children":null,"spread":false},{"title":"senet.py <span style='color:#111;'> 19.41KB </span>","children":null,"spread":false},{"title":"resnetmid.py <span style='color:#111;'> 8.71KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"inceptionresnetv2.py <span style='color:#111;'> 12.44KB </span>","children":null,"spread":false},{"title":"xception.py <span style='color:#111;'> 8.62KB </span>","children":null,"spread":false},{"title":"mobilenetv2.py <span style='color:#111;'> 7.83KB </span>","children":null,"spread":false},{"title":"squeezenet.py <span style='color:#111;'> 7.55KB </span>","children":null,"spread":false},{"title":"shufflenetv2.py <span style='color:#111;'> 7.23KB </span>","children":null,"spread":false},{"title":"pcb.py <span style='color:#111;'> 8.58KB </span>","children":null,"spread":false},{"title":"mudeep.py <span style='color:#111;'> 6.18KB </span>","children":null,"spread":false},{"title":"hacnn.py <span style='color:#111;'> 12.99KB </span>","children":null,"spread":false},{"title":"mlfn.py <span style='color:#111;'> 7.41KB </span>","children":null,"spread":false},{"title":"shufflenet.py <span style='color:#111;'> 5.81KB </span>","children":null,"spread":false}],"spread":false},{"title":"optim","children":[{"title":"lr_scheduler.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 123B </span>","children":null,"spread":false},{"title":"optimizer.py <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false}],"spread":true},{"title":"metrics","children":[{"title":"rank_cylib","children":[{"title":"test_cython.py <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 520B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 101B </span>","children":null,"spread":false},{"title":"rank_cy.pyx <span style='color:#111;'> 8.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"rank.py <span style='color:#111;'> 6.66KB </span>","children":null,"spread":false},{"title":"distance.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 148B </span>","children":null,"spread":false},{"title":"accuracy.py <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"datamanager.py <span style='color:#111;'> 14.20KB </span>","children":null,"spread":false},{"title":"transforms.py <span style='color:#111;'> 6.79KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 285B </span>","children":null,"spread":false},{"title":"sampler.py <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"image","children":[{"title":"sensereid.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"viper.py <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"cuhk03.py <span style='color:#111;'> 11.07KB </span>","children":null,"spread":false},{"title":"grid.py <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"msmt17.py <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 361B </span>","children":null,"spread":false},{"title":"cuhk01.py <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"prid.py <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"dukemtmcreid.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"ilids.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"market1501.py <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false}],"spread":false},{"title":"dataset.py <span style='color:#111;'> 12.70KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"video","children":[{"title":"mars.py <span style='color:#111;'> 4.52KB </span>","children":null,"spread":false},{"title":"ilidsvid.py <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false},{"title":"dukemtmcvidreid.py <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"prid2011.py <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 207B </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true},{"title":"losses","children":[{"title":"hard_mine_triplet_loss.py <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 523B </span>","children":null,"spread":false},{"title":"cross_entropy_loss.py <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 305B </span>","children":null,"spread":false},{"title":"engine","children":[{"title":"image","children":[{"title":"softmax.py <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false},{"title":"triplet.py <span style='color:#111;'> 5.61KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 119B </span>","children":null,"spread":false}],"spread":false},{"title":"engine.py <span style='color:#111;'> 16.96KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 258B </span>","children":null,"spread":false},{"title":"video","children":[{"title":"softmax.py <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"triplet.py <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 119B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"utils","children":[{"title":"tools.py <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"torchtools.py <span style='color:#111;'> 9.04KB </span>","children":null,"spread":false},{"title":"loggers.py <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 245B </span>","children":null,"spread":false},{"title":"rerank.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"reidtools.py <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"avgmeter.py <span style='color:#111;'> 702B </span>","children":null,"spread":false},{"title":"model_complexity.py <span style='color:#111;'> 9.21KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明