基于MSER和卷积神经网络的自然景物图像文本区域检测与识别。-研究论文

上传者: 38751014 | 上传时间: 2022-06-17 10:39:47 | 文件大小: 738KB | 文件类型: PDF
自然场景图像中的文本检测和识别是计算机视觉问题,长期以来一直是计算机工程师面临的挑战。 深度学习的新进步彻底改变了计算机视觉的世界。 本文尝试建立基于深度学习(DL)的文本检测和识别模型,以解释自然场景图像中的文本。 所提出的模型包括三个阶段,即候选文本区域检测,文本区域提取和文本识别。 首先将自然场景图像馈送到候选文本区域检测机制,该机制提取包含文本字符的潜在区域。 在处理的第一阶段中引入的包含非文本的区域在第二阶段中进行过滤。 然后,第二阶段产生的文本区域集将在最后阶段被识别。 候选文本区域检测中使用了最大稳定极值区域(MSER)算法。 该模型使用了两个卷积神经网络,一个在文本区域提取阶段,另一个在文本识别阶段。 看起来自然场景中的文本检测不是一个容易的问题。 在自然场景图像中检测和识别文本字符的复杂性主要是由于文本字符和自然场景的多样性,各种干扰的存在,不同的照明条件,文本的颜色,大小和区域的不同。 ICDAR-2011,ICDAR-2013,CHARS-74K和CIFAR-100数据集用于训练和验证我们的模型。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明