稀疏车辆轨迹条件下信号控制交叉口排队长度估计方法.

上传者: 38751014 | 上传时间: 2021-11-23 20:22:06 | 文件大小: 838KB | 文件类型: -
随着基于移动互联网的车辆导航技术的发展和应用,基于车辆轨迹的信号控制交叉口交通运行状态评价和方案优化逐渐成为研究热点。针对以往研究在稀疏车辆轨迹(一个周期内采样车辆少甚至无采样车辆的情形)的条件下排队长度无法估计或精度低和未能充分挖掘利用历史排队长度和其他非排队车辆轨迹信息等缺陷,本研究提出了一种面向稀疏轨迹数据条件下信号控制交叉口周期排队长度的估计方法。该方法可以通过利用非排队车辆轨迹信息修正最大排队长度估计值以及采用卡尔曼滤波算法和历史排队长度数据对稀疏车辆轨迹周期排队长度进行估计。为验证方法的有效性,本研究使用高频(3s)的滴滴车辆轨迹数据进行实地验证,结果表明本方法可以有效提高稀疏车辆轨迹条件下排队长度的估计精度,所有周期平均绝对误差为3.41辆,平均绝对误差百分比为16.89%,而缺失周期(采样排队车辆数小于等于1辆)平均绝对误差为3.33辆,平均绝对误差为17.78%。本研究成果可以为基于车辆轨迹数据的实时信号控制提供更加可靠的排队长度输入信息。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明