论文研究 - 基于高斯混合模型的EM算法初始化研究

上传者: 38750761 | 上传时间: 2022-06-28 15:02:43 | 文件大小: 426KB | 文件类型: PDF
EM算法是一种非常流行的最大似然估计方法,它是在观测数据为不完整数据时求解最大似然估计的迭代算法,同时也是估计有限混合模型参数的有效算法。 但是,EM算法不能保证找到全局最优解,而且往往容易陷入局部最优解,因此对迭代初始值的确定很敏感。 传统的EM算法随机选择初始值,提出了一种改进的初始值选择方法。 首先,我们使用k-nearest-neighbor方法删除异常值。 其次,使用k均值初始化EM算法。 将该方法与原始随机初始值方法进行比较,数值实验表明,EM算法初始化的参数估计效果明显优于原始EM算法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明