smote的matlab代码-kdd-cup-99-python:使用python和scikit-learn对kddcup99数据集进行分析和

上传者: 38750209 | 上传时间: 2021-12-28 09:54:11 | 文件大小: 870KB | 文件类型: -
smote的matlab代码kdd-cup-99-python 使用 python、scikit-learn 和 matplotlib 对原始 kdd cup 99 网络入侵检测数据集的 10% 子集进行分析和预处理。 线性可分性测试 使用 Convex-Hull 方法测试各种攻击类型的线性可分性。 正常类和两种最常见的攻击类型海王星和蓝精灵的船体边界之间的交集在前两个主成分的二维图中可视化。 这样就可以证明不同的攻击类别是非线性可分的。 使用 SMOTE 和 Cluster-Centroids 重采样 为了减轻预处理中描述的高级不平衡,将众所周知的重采样技术应用于原始数据集。 欠采样是通过使用 Cluster Centroids 方法实现的。 因此,数据基于聚类方法按相似性分组,总体目标是尽可能避免任何信息丢失。 过采样基于合成少数过采样技术 (SMOTE)。 在此技术中,点是从少数类中随机挑选的,并通过向它们附加 k 最近邻来综合丰富。 许可 版权所有 (c) 2019,Timea Magyar 保留所有权利。 如果满足以下条件,则允许以源代码和二进制形式重新分发和使用,无论是否修

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明