matlab图像分割肿瘤代码-BMED6780:医学图像处理

上传者: 38747946 | 上传时间: 2021-06-13 10:15:11 | 文件大小: 162KB | 文件类型: ZIP
matlab图像分割肿瘤代码BMED6780 医学图像处理 该项目的目标是学习和实施完整的转化式生物医学图像处理流程,以提供临床决策支持。 具体而言,将图像处理和数据挖掘技术应用于癌症组织病理学图像,并为癌症的诊断和预后发展提供客观且可重复的决策支持。 作者 Mosadoluwa Obatusin 阿什坎·奥贾吉(Ashkan Ojaghi) 尼桑(Nishanth Raopalimarraghupathi) 该课程学期项目分为两个模块: 1.1)核结构的自动分割1.2)图像特征提取和探索2.0)图像分类 尽管该项目正在进行中,但可以在以下位置找到初步报告: 数据集1: 将提供100份苏木精和曙红(H&E)染色的肾透明细胞癌组织切片的数字显微图像,该切片由100个肿瘤,100个坏死和100个基质切片组成,H&E染色可增强蓝紫色,白色和粉红色三种颜色。 这些颜色对应于特定的细胞结构。 坏死基质| 瘤 数据集2: 第二个数据集由100个肾脏透明细胞癌患者全幅幻灯片(WSI)的512×512像素矩形部分组成。 每位患者被标记为[患者名]瓷砖[行号] _ [列号] .PNG 16个相邻的部分来

文件下载

资源详情

[{"title":"( 32 个子文件 162KB ) matlab图像分割肿瘤代码-BMED6780:医学图像处理","children":[{"title":"BMED6780-master","children":[{"title":"featurerank.m <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"ojaghi_A_Main.m <span style='color:#111;'> 15.76KB </span>","children":null,"spread":false},{"title":"SupervisedSegmentation.m <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"FeatureExtraction_BMED6780.m <span style='color:#111;'> 10.40KB </span>","children":null,"spread":false},{"title":"normal2.m <span style='color:#111;'> 4.61KB </span>","children":null,"spread":false},{"title":"Makingref.m <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"pipeline.m <span style='color:#111;'> 412B </span>","children":null,"spread":false},{"title":"nucleidetector.m <span style='color:#111;'> 17.64KB </span>","children":null,"spread":false},{"title":"myclassifier.mlapp <span style='color:#111;'> 77.52KB </span>","children":null,"spread":false},{"title":"metrics.m <span style='color:#111;'> 600B </span>","children":null,"spread":false},{"title":"ICU_GUI.fig <span style='color:#111;'> 36.79KB </span>","children":null,"spread":false},{"title":"shapefeatures1.m <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"Kmeansmethod.m <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"normal3.m <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"normal.m <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"batchnormal.m <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"LDA.m <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"shapefeatures2.m <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false},{"title":"FeatExt.m <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"trainclassifier.m <span style='color:#111;'> 6.35KB </span>","children":null,"spread":false},{"title":"imagetraining.m <span style='color:#111;'> 8.74KB </span>","children":null,"spread":false},{"title":"mycnn.m <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"Featureextraction_Final.m <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"batchnormal3.m <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"RGB_Histogram_Demo.m <span style='color:#111;'> 7.85KB </span>","children":null,"spread":false},{"title":"rgb_hist.m <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"featextract_all.m <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"segmentation.m <span style='color:#111;'> 653B </span>","children":null,"spread":false},{"title":"KmeansSegmentation.m <span style='color:#111;'> 5.93KB </span>","children":null,"spread":false},{"title":"evaluate.m <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"knnalgorithm.m <span style='color:#111;'> 6.35KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明