基于卷积神经网络的密集场景人流估计方案

上传者: 38747906 | 上传时间: 2021-05-07 23:01:43 | 文件大小: 1.78MB | 文件类型: PDF
人流密度估计作为一种有效的人群监测、控制和行为理解方法,得到了广泛的应用和研究。但传统估计方法使用的手工特征提取图像特征单一、准确度较低,容易造成密集场景人流估计不准确。为此,文中提出了一种基于深度的卷积神经网络(CNN)人群密度估计方法,利用典型的深层网络Googlenet 和VGGnet进行了方法改进。通过采用一个包括18个拥挤景区密集场景、超过160 K密度的注释图像数据集进行的实验测试结果表明,该方法的平均准确率为92.46%,与GLCM-SVM方法进行对比的结果也充分证明了该方法的优越性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明