通过残余深度学习进行PAN粉碎

上传者: 38746442 | 上传时间: 2022-04-19 16:43:09 | 文件大小: 1.75MB | 文件类型: PDF
深卷积神经网络(DCNN)的一个显着优势是它们对局部复杂结构的表示能力。 受此观察结果的启发,提出了一种基于DCNN的残差学习模型,以学习高分辨率(HR)和低分辨率(LR)图像块之间的非线性映射函数。 DCNN是基于图像块进行训练的,这些图像块仅从HR / LR全色(PAN)图像中采样而没有其他训练图像。 我们训练DCNN以基于反向传播的小批量梯度下降来获得具有HR / LR PAN补丁对的非线性映射函数。 从转移学习方法的观点出发,通过假设HR / LR多光谱(MS)图像在HR / LR PAN图像块之间共享相同的映射功能,可以使用训练后的DCNN从观察到的LR MS图像重建HR MS图像。 由于残差学习机制的优点,该方法可以在保持光谱特征的同时实现良好的几何细节注入。 实验结果表明,与传统方法相比,该方法在视觉感知和数值测量方面均具有更好的性能。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明