上传者: 38746166
|
上传时间: 2021-12-07 10:41:31
|
文件大小: 11.31MB
|
文件类型: -
基于卷积神经网络(CNN)的VGG-19(Visual Geometry Group)模型,研究了卷积神经网络对输入纹理进行卷积时,输入纹理特征图的边缘信息对生成自然纹理效果的影响。在使用卷积神经网络的VGG对输入图像进行卷积时,为了防止过拟合现象,采用平均池化的方式对特征图进行处理,在一定程度上保护了特征图的边缘信息,相对采用最大池化处理特征图取得了更好的生成效果。同时,提取各层特征图的边缘信息并将其叠加到特征图中,能很好地保留纹理图像的边缘结构信息。实验结果表明,改进后的方法能取得较为理想的纹理生成效果。