论文研究-基于智能手机传感器的人体活动识别.pdf

上传者: 38744435 | 上传时间: 2021-03-16 22:05:52 | 文件大小: 594KB | 文件类型: PDF
人体活动识别是上下文感知系统及其应用中一个具有挑战性的研究问题。目前,关于人体活动识别的研究主要使用一些基于监督学习或半监督学习的统计方法来构建识别模型。然而,考虑到识别活动类型本身具有的复杂性和多样性,当前的人体活动识别系统不能取得较好的识别效果。针对这一问题,通过智能手机的三维加速度和陀螺仪传感器信息来提取人体活动的特征向量,选择四种典型的统计学习方法(分别是K-近邻算法、支持向量机、朴素贝叶斯网络以及基于朴素贝叶斯网络的AdaBoost算法)分别创建人体活动的识别模型,最后通过模型决策得到最优的人体活动识别模型。实验结果表明,通过模型决策选择的识别模型对人体活动识别准确率达到92%,取得很好的识别效果。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明