上传者: 38744375
|
上传时间: 2022-06-12 10:42:25
|
文件大小: 529KB
|
文件类型: PDF
图像去噪是图像处理中一个非常重要的环节。为了改善降质图像质量,根据Donoho提出的小波阈值去噪算法,分析了维纳滤波原理,提出了一种基于修正维纳滤波的小波包变换图像去噪方法。利用修正维纳滤波对噪声图像进行处理,用处理后的图像计算噪声的标准方差,以此作为小波包的阈值。利用小波包对维纳滤波后的图像进行分解,实现对图像的低频和高频部分分别进行分解,用计算出的阈值对小波包树系数进行软阈值处理。利用小波包逆变换来获取去噪后的图像。结果表明:在噪声方差为0.01时,经该算法去噪后图像的PSNR比小波包自适应阈值去噪后的PSNR高出8.8 dB。该算法不仅能有效地去除加性高斯白噪声,而且能很好地保留边缘信息,极大地改善了图像的视觉质量。