论文研究-改进LeNet-5网络在图像分类中的应用.pdf

上传者: 38744270 | 上传时间: 2022-06-04 21:55:34 | 文件大小: 787KB | 文件类型: PDF
LeNet-5卷积神经网络(CNN)虽然在手写数字识别上取得很好的分类效果,但在具有复杂纹理特征的数据集上分类精度不高。为提高网络在复杂纹理特征图像上分类的正确率,提出一种改进的LeNet-5网络结构。引入跨连思想,充分利用网络提取的低层次特征;把Inception V1模块嵌入LeNet-5卷积神经网络,提取图像的多尺度特征;输出层使用softmax函数对图像进行分类。在Cifar-10和Fashion MNIST数据集上进行的实验结果表明,改进的卷积神经网络在复杂纹理特征数据集上具有很好的分类能力。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明