上传者: 38743968
|
上传时间: 2022-11-29 21:37:32
|
文件大小: 866KB
|
文件类型: PDF
传统的PID控制器参数优化方法容易产生振荡和较大的超调量,因此智能算法如遗传算法(SGA)和粒子群算法(PSO)被用于参数优化,弥补传统算法的不足,但是遗传算法在进化过程中收敛速度慢,粒子群算法存在易于早熟的缺点。在分析量子粒子群算法(QPSO)的基础上,在算法中引入了权重系数,提出使用改进的量子粒子群算法(WQPSO)优化PID控制器参数。将改进量子粒子群算法与量子粒子群算法、粒子群算法通过benchmark测试函数进行了比较。最后,通过三个传递函数实例,分别使用Z-N、GA、PSO方法和改进的量子粒子群算法进行了PID控制器参数优化设计,并对结果进行了分析。