上传者: 38743481
|
上传时间: 2021-09-29 09:54:23
|
文件大小: 1.03MB
|
文件类型: PDF
交通流量序列具有不平稳性、周期性、易受节假日等因素影响的特点,因此交通流量预测是一项困难的任务。针对交通流量序列的预测问题,设计了一种基于深度学习的交通流量预测模型。模型融合了卷积神经网络和长短时记忆神经网络两种网络结构,卷积神经网络用于提取特征分量,长短时记忆神经网络综合提取出来的特征分量做序列预测。通过在贵州省高速公路车流量数据集上的验证,模型比传统的预测方法具有更高的精确度和实时性,在不同数据集上的泛化性能良好。