数据融合matlab代码-JSM_SVM_MLL:JSM_SVM_MLL

上传者: 38742453 | 上传时间: 2022-05-05 16:08:34 | 文件大小: 30.93MB | 文件类型: ZIP
数据融合matlab代码JSM_SVM_MLL 编码是针对论文“ Gao,Q.和Lim,S.,2019. Matlab的实现”。该方法用于超光谱图像分类的支持向量机和联合稀疏模型​​的概率融合。GIScience和遥感。(DOI: 10.1080 / 15481603.2019.1623003“ 为了使用该代码,请确保所有文件夹都在当前的Matlab路径中,并对本文中使用的三个数据集运行de​​mo_IP,demo_PU,demo_SA。 本文中包含的数据集可从上免费下载。 如有任何建议和评论,请将其发送给作者:。

文件下载

资源详情

[{"title":"( 68 个子文件 30.93MB ) 数据融合matlab代码-JSM_SVM_MLL:JSM_SVM_MLL","children":[{"title":"JSM_SVM_MLL-master","children":[{"title":"JSM_SVM_MLL","children":[{"title":"prob_ip.mat <span style='color:#111;'> 562.19KB </span>","children":null,"spread":false},{"title":"modsel.m <span style='color:#111;'> 12.00KB </span>","children":null,"spread":false},{"title":"demo_JSM_PU.m <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"ComputeClassificationAccuracy.m <span style='color:#111;'> 5.26KB </span>","children":null,"spread":false},{"title":"subspace_mlogistic.m <span style='color:#111;'> 296B </span>","children":null,"spread":false},{"title":"SOMP.m <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"demo_JSM_SA.m <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"svmpredict.mexw64 <span style='color:#111;'> 24.50KB </span>","children":null,"spread":false},{"title":"Indian_pines_corrected.mat <span style='color:#111;'> 5.68MB </span>","children":null,"spread":false},{"title":"makekernel.m <span style='color:#111;'> 744B </span>","children":null,"spread":false},{"title":"classify_svm_mykernel.m <span style='color:#111;'> 8.35KB </span>","children":null,"spread":false},{"title":"organizas_tr.m <span style='color:#111;'> 451B </span>","children":null,"spread":false},{"title":"svmtrain.c <span style='color:#111;'> 11.10KB </span>","children":null,"spread":false},{"title":"svmpredict.c <span style='color:#111;'> 9.05KB </span>","children":null,"spread":false},{"title":"subspace_classifier.m <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"aux_ordenar_v4.m <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"Indian_pines_gt.mat <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"classify_svm.m <span style='color:#111;'> 6.43KB </span>","children":null,"spread":false},{"title":"reference.bib <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"AVIRIS_IP.mat <span style='color:#111;'> 12.09MB </span>","children":null,"spread":false},{"title":"LibSVM","children":[{"title":"modsel.m <span style='color:#111;'> 11.97KB </span>","children":null,"spread":false},{"title":"svmpredict.mexw64 <span style='color:#111;'> 25.00KB </span>","children":null,"spread":false},{"title":"classify_svm.m <span style='color:#111;'> 6.43KB </span>","children":null,"spread":false},{"title":"libsvmwrite.mexw64 <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false},{"title":"mapstd.m <span style='color:#111;'> 5.09KB </span>","children":null,"spread":false},{"title":"boiler_process.m <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"libsvmread.mexw64 <span style='color:#111;'> 11.00KB </span>","children":null,"spread":false},{"title":"epsSVM.m <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"getPatterns.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"myUsingLIBSVM.m <span style='color:#111;'> 1.00KB </span>","children":null,"spread":false},{"title":"removeconstantrows.m <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"getDefaultParam_libSVM.m <span style='color:#111;'> 1009B </span>","children":null,"spread":false},{"title":"modsel_unbalanced.m <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"mapminmax.m <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false},{"title":"svmtrain.mexw64 <span style='color:#111;'> 62.50KB </span>","children":null,"spread":false},{"title":"generateLibSVMcmd.m <span style='color:#111;'> 15.92KB </span>","children":null,"spread":false}],"spread":false},{"title":"calcError.m <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"demo_JSM_IP.m <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"label_new.m <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"IP.mat <span style='color:#111;'> 12.31MB </span>","children":null,"spread":false},{"title":"demo_PU.m <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"train_test_random_new_i.m <span style='color:#111;'> 820B </span>","children":null,"spread":false},{"title":"svmpredict.mexw32 <span style='color:#111;'> 20.50KB </span>","children":null,"spread":false},{"title":"mlogistic.m <span style='color:#111;'> 233B </span>","children":null,"spread":false},{"title":"epsSVM.m <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"GraphCutMex","children":[{"title":"GraphCutConstr.mexw32 <span style='color:#111;'> 49.00KB </span>","children":null,"spread":false},{"title":"GraphCut3dConstr.mexw64 <span style='color:#111;'> 14.50KB </span>","children":null,"spread":false},{"title":"GraphCutConstr.mexw64 <span style='color:#111;'> 11.00KB </span>","children":null,"spread":false},{"title":"GraphCutMex.mexw32 <span style='color:#111;'> 50.50KB </span>","children":null,"spread":false},{"title":"GraphCutConstrSparse.mexw64 <span style='color:#111;'> 11.50KB </span>","children":null,"spread":false},{"title":"GraphCutMex.mexw64 <span style='color:#111;'> 41.00KB </span>","children":null,"spread":false},{"title":"GraphCut3dConstr.mexw32 <span style='color:#111;'> 51.50KB </span>","children":null,"spread":false},{"title":"GraphCut.m <span style='color:#111;'> 15.22KB </span>","children":null,"spread":false},{"title":"GraphCutConstrSparse.mexw32 <span style='color:#111;'> 48.00KB </span>","children":null,"spread":false}],"spread":false},{"title":"demo_IP.m <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"svmtrain.mexw32 <span style='color:#111;'> 48.50KB </span>","children":null,"spread":false},{"title":"getPatterns.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"epsSVM_mykernel.m <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"getDefaultParam_libSVM.m <span style='color:#111;'> 1009B </span>","children":null,"spread":false},{"title":"demo_SA.m <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"list_create.m <span style='color:#111;'> 940B </span>","children":null,"spread":false},{"title":"generateLibSVMcmd_mykernel.m <span style='color:#111;'> 15.98KB </span>","children":null,"spread":false},{"title":"svmtrain.mexw64 <span style='color:#111;'> 62.50KB </span>","children":null,"spread":false},{"title":"label_class.m <span style='color:#111;'> 982B </span>","children":null,"spread":false},{"title":"ReadMe.txt <span style='color:#111;'> 706B </span>","children":null,"spread":false},{"title":"reference.bib.bak <span style='color:#111;'> 469B </span>","children":null,"spread":false},{"title":"generateLibSVMcmd.m <span style='color:#111;'> 15.92KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 714B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明