基于Faster RCNN的红外热图像热斑缺陷检测研究

上传者: 38741317 | 上传时间: 2022-02-02 11:54:31 | 文件大小: 1.69MB | 文件类型: -
光伏组件在日常运行中不可避免会产生各种缺陷,热斑缺陷就是其中一种.现有的研究主要针对光伏组件在生产工艺流程中出现的缺陷,对日常运行中光伏组件产生的缺陷检测算法研究很少并且存在泛化能力差、准确率不足等问题.本文在原始Faster RCNN的基础上,结合图像预处理、迁移学习、改进特征提取网络模型以及改进锚框选区方案,得到热斑缺陷检测模型.实验证明,使用本文模型在自制的测试集上平均检测准确率可达97.34%,相比原始Faster RCNN提高了4.51%.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明