卷积神经网络自动分类手机外壳划痕

上传者: 38740201 | 上传时间: 2021-10-26 16:39:31 | 文件大小: 899KB | 文件类型: -
塑料手机外壳出厂合格检测时, 使用传统的人工辨别外观缺陷, 费时费力. 利用深度学习的卷积神经网络模型训练一个分类器, 实现手机外壳外观出现的划痕缺陷自动化检测, 可以极大的提高工作效率. 实验首先建立基本的卷积神经网络模型, 训练模型获得识别基线, 再设计修改逐步提高检测准确率. 为了解决小数据集训练中的模型过拟合和提高检测精度, 综合使用了丢弃层、数据增强技术和批量标准化, 减少参数量, 并应用迁移学习等方法. 实验结果证明, 分类器模型能有效提升准确率, 在小数据集上达到非常好的划痕缺陷识别效果.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明