偏最小二乘法检验matlab代码-GeneExp_and_CNV_FCsignatures:GeneExp_and_CNV_FCsignatu

上传者: 38740144 | 上传时间: 2021-06-08 18:05:24 | 文件大小: 93.51MB | 文件类型: ZIP
偏小二乘法检验matlab代码GeneExp_and_CNV_FCsignatures 用于再现 AHBA 基因表达空间模式与 16p11.2 缺失和 22q11.2 缺失的 FC 特征之间关联结果的脚本。 请引用:。 依赖关系 该代码是在 R2019b 中编写和测试的,还包括重现报告的分析和统计数据所需的数据。 脚本可以直接运行以重现偏最小二乘回归 (PLSR) 分析和每个基因分析的相关性。 此外,还包含一个 R 脚本以使用 和 制作直方图。 分析 调用偏最小二乘回归 (PLSR) 和每个基因相关性分析。 运行: script_call_PLSR_and_CorrPerGene.m 这将调用以下脚本: 1: code/script1_call_PLSR_nodal_and_regional.m 然后 2: code/script2_call_CorrPerGene.m PLSR 结果(解释的百分比方差 (PCTVAR) 和 p 值)以及 CorrPerGene 结果(Pearson r、p 值、FDR p 值)作为 .xlsx 文件保存在data文件夹中。 最后,可以使用 16p11

文件下载

资源详情

[{"title":"( 39 个子文件 93.51MB ) 偏最小二乘法检验matlab代码-GeneExp_and_CNV_FCsignatures:GeneExp_and_CNV_FCsignatu","children":[{"title":"GeneExp_and_CNV_FCsignatures-master","children":[{"title":"data","children":[{"title":"cnv_genes_cnv16p112.csv <span style='color:#111;'> 149B </span>","children":null,"spread":false},{"title":"cell_null_beta_maps_ROIxROI_22q11del.mat <span style='color:#111;'> 53.10MB </span>","children":null,"spread":false},{"title":"tab_PLSR_Ncomp2_NodalFC_PctVar_Pval_MIST64.xlsx <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false},{"title":"tab_CorrPerGene_CNV_GeneSetsOnly_MIST64.xlsx <span style='color:#111;'> 11.66KB </span>","children":null,"spread":false},{"title":"gene_set_all.csv <span style='color:#111;'> 131.37KB </span>","children":null,"spread":false},{"title":"table_specificity_PLSR_nodal_profiles.csv <span style='color:#111;'> 238B </span>","children":null,"spread":false},{"title":"cell_random_perm_indices_10k.mat <span style='color:#111;'> 8.17MB </span>","children":null,"spread":false},{"title":"cell_null_beta_maps_ROIxROI_16p11del.mat <span style='color:#111;'> 53.12MB </span>","children":null,"spread":false},{"title":"cell_null_nodal_profiles_22q11del.mat <span style='color:#111;'> 2.87MB </span>","children":null,"spread":false},{"title":"table_regional_specificty_PvalRandGeneSet.csv <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"table_regional_specificty_PCTVAR.csv <span style='color:#111;'> 4.85KB </span>","children":null,"spread":false},{"title":"tab_PLSR_Ncomp2_RegionalFC_PctVarPvalFDR_MIST64.xlsx <span style='color:#111;'> 13.85KB </span>","children":null,"spread":false},{"title":"Supplementary_Table_S1.xlsx <span style='color:#111;'> 458.00KB </span>","children":null,"spread":false},{"title":"cell_null_nodal_profiles_16p11del.mat <span style='color:#111;'> 2.87MB </span>","children":null,"spread":false},{"title":"df_abagen_roi_x_genes_ROInames_MIST_64.csv <span style='color:#111;'> 18.24MB </span>","children":null,"spread":false},{"title":"cnv_genes_cnv22q112.csv <span style='color:#111;'> 248B </span>","children":null,"spread":false},{"title":"tab_CorrPerGene_All_Genes_MIST64.xlsx <span style='color:#111;'> 1.82MB </span>","children":null,"spread":false}],"spread":false},{"title":"code","children":[{"title":"scriptR_plot_HistogramCorrPerGene_16p22q.R <span style='color:#111;'> 7.29KB </span>","children":null,"spread":false},{"title":"BasicFunc_compute_mean_stat_topk_and_pval.m <span style='color:#111;'> 981B </span>","children":null,"spread":false},{"title":"script2_call_CorrPerGene.m <span style='color:#111;'> 9.93KB </span>","children":null,"spread":false},{"title":"fdr_bh.m <span style='color:#111;'> 8.59KB </span>","children":null,"spread":false},{"title":"script1_call_PLSR_nodal_and_regional.m <span style='color:#111;'> 10.64KB </span>","children":null,"spread":false},{"title":"BasicFunc_load_cnv_gene_lists.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"fComputeCorr_inMRIprofile_v_GeneExp_perGene.m <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false},{"title":"BasicFunc_compute_median_stat_and_pval.m <span style='color:#111;'> 898B </span>","children":null,"spread":false},{"title":"BasicFunc_compute_centile_per_array.m <span style='color:#111;'> 554B </span>","children":null,"spread":false},{"title":"fComputePLSR_inMRIprofile_v_CNVgeneExp.m <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"BasicFunc_load_FC_maps.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":".Rhistory <span style='color:#111;'> 24.96KB </span>","children":null,"spread":false},{"title":"fComputePLSR_regionalConnectivity_vs_CNVgeneExp.m <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"fComputePLSR_inMRIprofile_v_randCNVgeneSets.m <span style='color:#111;'> 3.07KB </span>","children":null,"spread":false}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"script_call_PLSR_and_CorrPerGene.m <span style='color:#111;'> 738B </span>","children":null,"spread":false},{"title":"plots","children":[{"title":"hist_CorrPerGene_FC16pdel_v_Genes22q.png <span style='color:#111;'> 430.80KB </span>","children":null,"spread":false},{"title":"hist_CorrPerGene_FC22qdel_v_Genes22q.png <span style='color:#111;'> 499.98KB </span>","children":null,"spread":false},{"title":"hist_CorrPerGene_FC16pdel_v_Genes16p.png <span style='color:#111;'> 260.01KB </span>","children":null,"spread":false},{"title":"hist_CorrPerGene_FC22qdel_v_Genes16p.png <span style='color:#111;'> 336.48KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明