基于改进的Mask R-CNN的乳腺肿瘤目标检测研究

上传者: 38736652 | 上传时间: 2021-11-20 21:21:17 | 文件大小: 9.89MB | 文件类型: -
乳腺癌是全球女性死亡率最高的恶性肿瘤之一,早期发现有助于提升患者的存活率。本文利用深度学习中的目标检测网络对乳腺X线图像中的肿瘤病变区域进行定位和分类;然后选取Mask R-CNN网络作为目标检测模型,对Mask R-CNN的基准网络D-ShuffleNet进行改进,提出了一种新的网络——Mask R-CNN-II网络,并在Mask R-CNN-II网络中应用迁移学习算法。通过实验验证了Mask R-CNN-II网络比Mask R-CNN网络的检测精度更高,而且验证了所提基准网络、所使用的融合图像的思想以及迁移学习算法是有效的。Mask R-CNN-II有利于提高乳腺肿瘤的定位与分类,可为放射科医生提供辅助诊断意见,具有一定的临床应用价值。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明