基于EMD和DNN的高炉铁水硅含量预测。

上传者: 38735544 | 上传时间: 2021-10-15 21:44:12 | 文件大小: 518KB | 文件类型: -
在高炉炼铁过程中,对铁水中硅含量的预测是最重要但也是最困难的一项。提出了一种基于经验模态分解(EMD)和动态神经网络(DNN)的组合算法,用于预测高炉中铁水的硅含量。为了消除原始历史数据的不同频率分量的相互干扰,EMD算法将原始历史数据分解为一系列不同的频率和固定本征函数(IMF)和一个残差。然后将每个IMF和残差近似于其非线性自回归模型(NARM)并通过DNN进行预测,最后,通过将每个IMF和残差的预测相加,可以得出硅含量的预测。最后,通过对中国某钢铁厂采集的一些硅含量的样本数据进行实验以验证我们的算法,结果表明,我们提出的组合算法比没有EMD的单一算法具有更好的性能,这表明该算法的有效性。提出的算法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明