上传者: 38735541
|
上传时间: 2022-05-23 10:38:41
|
文件大小: 9.64MB
|
文件类型: PDF
为了提高三维点云数据配准的效率, 提出一种基于法向量分布特征的关键点初始匹配与迭代最近点(ICP)的精确配准的两步点云配准算法。首先, 定义点云的邻接区域和法向量分布特征计算模型, 提出基于该模型的关键点选择算法; 其次, 为每个关键点建立局部坐标系, 计算关键点的快速点特征直方图, 使用采样一致性配准算法匹配关键点的特征, 去除错误匹配点, 求解出变换矩阵, 完成初始配准; 最后, 使用ICP算法, 对多视点云的初始配准结果进行精确配准。实验结果表明, 在散乱点云数据和自获取的深度点云数据配准中, 该算法能够在确保配准精度的同时有效提升配准效率。