上传者: 38734269
|
上传时间: 2024-01-03 17:34:10
|
文件大小: 1.53MB
|
文件类型: PDF
针对工业过程的非线性和多模态特征,提出了一种基于局部近邻标准化(local neighborhood standard ization,LNS)和主多项式分析(principal polynomial analysis,PPA)结合的故障检测算法。首先,将样本数据通过局部近邻标准化(local neighbor standardization,LNS)算法,对每个样本构建k近邻数据集;然后应用k近邻数据集的均值和方差对当前样本进行标准化处理;最后使用PPA对已经标准化处理后的样本建模,计算出T2和SPE统计量,并确定控制限进行故障检测。LNS算法能够去除数据中的多模态特征,而PPA算法能够有效的处理非线性数据,因此LNS-PPA方法能够提高具有多模态非线性特征的工业过程故障检测能力。将该方法应用于多模态非线性数值例子和田纳西伊斯曼(TE)化工过程,并将测试结果与主元分析法(principal component analysis,PCA)、主多项式分析法进行对比,其结果能够有效验证LNS-PPA的优越性。