matlab反应扩散代码-CFDofReactiveFlows:Matlab(R)和C++中的代码集,用于解决“React流的计算流体动力学”

上传者: 38734008 | 上传时间: 2023-03-26 09:59:45 | 文件大小: 1.08MB | 文件类型: ZIP
matlabReact扩散代码React流CFD Matlab(R)和C ++中的代码集,用于解决“React流的计算流体动力学”课程(Politecnico di Milano)中介绍和讨论的基本问题 1.用有限差分(FD)方法进行一维对流扩散方程 对流扩散方程是使用有限差分法在一维域上求解的。 假定常数,均匀速度和扩散系数。 时间离散化采用正向(或显式)欧拉方法,而空间二阶导数则采用二阶居中方案进行离散化。 Matlab脚本: Matlab实时脚本: 2.二维有限差分法(FD)的对流扩散方程 对流扩散方程使用有限差分法在二维矩形域上求解。 假定恒定,均匀的速度分量和扩散系数。 时间离散化采用正向(或显式)欧拉方法,而空间二阶导数则采用二阶居中方案进行离散化。 Matlab脚本: Matlab实时脚本: 3.二维泊松方程 使用有限差分法在二维矩形域上求解泊松方程。 最初采用常数源术语。 使用二阶居中方案离散化空间导数。 采用不同的方法求解方程:Jacobi方法,Gauss-Siedler方法和连续过度松弛(SOR)方法 Matlab脚本: Matlab实时脚本: 通过显式组装与空间离

文件下载

资源详情

[{"title":"( 44 个子文件 1.08MB ) matlab反应扩散代码-CFDofReactiveFlows:Matlab(R)和C++中的代码集,用于解决“React流的计算流体动力学”","children":[{"title":"CFDofReactiveFlows-master","children":[{"title":"LICENSE <span style='color:#111;'> 34.32KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 9.85KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 508B </span>","children":null,"spread":false},{"title":"codes","children":[{"title":"homework","children":[{"title":"Homework3.pdf <span style='color:#111;'> 130.52KB </span>","children":null,"spread":false},{"title":"homework4_nonuniform.m <span style='color:#111;'> 11.50KB </span>","children":null,"spread":false},{"title":"homework4_southwall.m <span style='color:#111;'> 10.01KB </span>","children":null,"spread":false},{"title":"homework3_advdiff.m <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"homework3_poisson.m <span style='color:#111;'> 6.73KB </span>","children":null,"spread":false},{"title":"Homework4.pdf <span style='color:#111;'> 186.45KB </span>","children":null,"spread":false},{"title":"homework1.m <span style='color:#111;'> 9.80KB </span>","children":null,"spread":false},{"title":"Homework1.pdf <span style='color:#111;'> 144.60KB </span>","children":null,"spread":false},{"title":"homework4_cutdomain.m <span style='color:#111;'> 11.22KB </span>","children":null,"spread":false}],"spread":true},{"title":"utilities","children":[{"title":"tridiagonal.m <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false}],"spread":true},{"title":"finite_volume","children":[{"title":"steady_advection_diffusion_1d_implicit.m <span style='color:#111;'> 6.27KB </span>","children":null,"spread":false},{"title":"diffusion_1d.m <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"diffusion_1d_implicit.m <span style='color:#111;'> 6.16KB </span>","children":null,"spread":false},{"title":"steady_advection_diffusion_1d_implicit_quick.m <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"driven_cavity","children":[{"title":"driven_cavity_2d_vorticity.cpp <span style='color:#111;'> 13.23KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_vorticity_nonuniform.m <span style='color:#111;'> 13.71KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered_inout_rtd.m <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered_passivescalar_fd.m <span style='color:#111;'> 13.38KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_vorticity.m <span style='color:#111;'> 11.42KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered_inout_tau.m <span style='color:#111;'> 10.35KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered_nonuniform.m <span style='color:#111;'> 16.96KB </span>","children":null,"spread":false},{"title":"taylor_green_vortex_2d.m <span style='color:#111;'> 13.49KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered_buoyancy.m <span style='color:#111;'> 14.41KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered.m <span style='color:#111;'> 12.61KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered_obstacle.m <span style='color:#111;'> 14.34KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered.cpp <span style='color:#111;'> 12.70KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered_inout.m <span style='color:#111;'> 14.57KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered_inout_passivescalar.m <span style='color:#111;'> 17.49KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_vorticity_live.mlx <span style='color:#111;'> 229.06KB </span>","children":null,"spread":false},{"title":"experimental_data","children":[{"title":"v_along_x.exp <span style='color:#111;'> 752B </span>","children":null,"spread":false},{"title":"u_along_y.exp <span style='color:#111;'> 762B </span>","children":null,"spread":false},{"title":"Comparison.xlsx <span style='color:#111;'> 99.60KB </span>","children":null,"spread":false}],"spread":false},{"title":"driven_cavity_2d_staggered_kl.m <span style='color:#111;'> 16.59KB </span>","children":null,"spread":false},{"title":"driven_cavity_2d_staggered_passivescalar_fv.m <span style='color:#111;'> 14.00KB </span>","children":null,"spread":false}],"spread":false},{"title":"finite_difference","children":[{"title":"poisson_2d_matrix.m <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"advection_diffusion_1d.m <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"advection_diffusion_2d.m <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false},{"title":"advection_diffusion_2d_live.mlx <span style='color:#111;'> 209.04KB </span>","children":null,"spread":false},{"title":"poisson_2d.m <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"advection_diffusion_1d_live.mlx <span style='color:#111;'> 14.33KB </span>","children":null,"spread":false},{"title":"poisson_2d_live.mlx <span style='color:#111;'> 24.29KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明