基于样本权重的出租车聚集区识别算法 (2013年)

上传者: 38732277 | 上传时间: 2023-02-21 17:50:35 | 文件大小: 413KB | 文件类型: PDF
聚类技术可以用于对具有动态、随机和异步并发特性的出租车对象进行分类。但是,现有的聚类技术认为每个出租车样本对聚类的贡献相同,没有考虑到不同样本的不同影响,这在一定程度上影响了聚类的精度。提出了一种基于样本权重的出租车聚集区识别算法――SFTA_IB算法,算法引入了样本权重来充分反映不同样本的贡献度。在此基础上,将出租车视为原变量X,出租车坐标数据视为相关变量Y,目标是寻求压缩变量T,在T中最大化保留相关变量的信息。实验表明,SFTA_IB算法可以准确识别目标样本周边的出租车聚集区,针对性地指导目标出租车个

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明