改进的混沌粒子群算法对WLS-SVM性能参数的优化 (2014年)

上传者: 38731123 | 上传时间: 2022-06-02 10:00:14 | 文件大小: 1.2MB | 文件类型: PDF
加权最小二乘支持向量机(WLS-SVM)的学习性能和泛化能力取决于其正则化因子C和核函数参数σ的取值。对此,针对WLS-SVM建立C和σ的组合优化目标函数,采用基于Lozi映射的粒子群(PSO)算法来搜索最优目标函数值。迭代过程中,通过分别映射PSO个体最优位置,把产生的混沌序列中的最优解分别逆运算取代当前个体最优位置,引入混沌机制,以混沌变量的遍历性改进粒子群算法,提高全局搜索能力,避免过早陷入局部最优。将其应用于某玩具企业原料月消耗量预测,结果表明了文中所提方法的有效性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明