信道编码matlab代码-Channel_Estimation_cGAN:使用条件GAN的一比特多用户大规模MIMO的信道估计

上传者: 38731027 | 上传时间: 2021-07-24 16:20:29 | 文件大小: 84.58MB | 文件类型: ZIP
信道编码matlab代码使用条件GAN的一比特多用户大规模MIMO的信道估计 1.说明 该存储库是本文的实现:董玉迪,王华霞和姚玉东,“使用条件GAN进行一比特多用户大规模MIMO的信道估计”。 ArXiv:2006.11435 [Eess],2020年6月。 该论文被IEEE通信信函(DOI:10.1109 / LCOMM.2020.3035326)接受 2.运行cGAN以执行通道估计(TensorFlow版本为2.0) 数据集已经生成了“ Data_Generation_matlab / Gan_Data / Gan_0_dBIndoor2p4_64ant_32users_8pilot.mat” ,其中包含通道数据和量化的信号数据。 运行主要功能“ cGAN_python / main_cGAN.py” 。 对于每个时期,结果将保存在文件夹“ cGAN_python / Results”中,并显示如下可视结果。 3.如何生成数据 从此链接下载“ I1_2p4.zip” :。 然后,应该提取“ I1_2P4”文件夹,并将其放在“ Data_Generation_matlab / Ra

文件下载

资源详情

[{"title":"( 19 个子文件 84.58MB ) 信道编码matlab代码-Channel_Estimation_cGAN:使用条件GAN的一比特多用户大规模MIMO的信道估计","children":[{"title":"Channel_Estimation_cGAN-master","children":[{"title":"cGAN_python","children":[{"title":"generated_img","children":[{"title":"img_2.png <span style='color:#111;'> 15.17KB </span>","children":null,"spread":false},{"title":"img_1.png <span style='color:#111;'> 15.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"main_cGAN.py <span style='color:#111;'> 6.85KB </span>","children":null,"spread":false},{"title":"Results","children":[{"title":"Eest_cGAN_2_0db_Indoor2p4_64ant_32users_8pilot.mat <span style='color:#111;'> 8.69MB </span>","children":null,"spread":false},{"title":"Eest_cGAN_1_0db_Indoor2p4_64ant_32users_8pilot.mat <span style='color:#111;'> 8.73MB </span>","children":null,"spread":false}],"spread":true},{"title":"GAN","children":[{"title":"cGANGenerator.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"data_preprocess.cpython-37.pyc <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"cGANDiscriminator.cpython-37.pyc <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"cGANGenerator.cpython-37.pyc <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"data_preprocess.py <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"cGANDiscriminator.py <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"Data_Generation_matlab","children":[{"title":"Gan_Data","children":[{"title":"Gan_0_dBIndoor2p4_64ant_32users_8pilot.mat <span style='color:#111;'> 67.37MB </span>","children":null,"spread":false}],"spread":true},{"title":"uniformPilotsGen.m <span style='color:#111;'> 294B </span>","children":null,"spread":false},{"title":"RayTracing Scenarios","children":[{"title":"Readme.txt <span style='color:#111;'> 157B </span>","children":null,"spread":false}],"spread":true},{"title":"construct_DeepMIMO_channel.m <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"DeepMIMO_generator.m <span style='color:#111;'> 3.73KB </span>","children":null,"spread":false},{"title":"read_raytracing.m <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"GenerateData_Main.m <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明