基于MEMD的高速列车转向架故障的排列熵特征分析

上传者: 38730389 | 上传时间: 2022-08-21 00:19:42 | 文件大小: 414KB | 文件类型: PDF
在监测高速列车转向架工作状态时,针对列车运动自由度数目多、不同监测点数据相关性强的特点,提出了多元经验模态分解和排列熵相结合的故障特征提取方法。首先利用多元经验模态分解对高速列车转向架7种不同工况的振动信号进行多通道同步联合分析,获取不同数据通道间的共同模式。利用相关系数选取反映故障信号特征的有效本征模态函数来重构原始故障信号,计算重构信号的排列熵作为故障特征。最后采用支持向量机进行故障状态分类识别。实验结果表明,列车在各种运行速度下均能达到85%以上的分类效果,验证了该方法的有效性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明