上传者: 38730389
|
上传时间: 2022-08-21 00:19:42
|
文件大小: 414KB
|
文件类型: PDF
在监测高速列车转向架工作状态时,针对列车运动自由度数目多、不同监测点数据相关性强的特点,提出了多元经验模态分解和排列熵相结合的故障特征提取方法。首先利用多元经验模态分解对高速列车转向架7种不同工况的振动信号进行多通道同步联合分析,获取不同数据通道间的共同模式。利用相关系数选取反映故障信号特征的有效本征模态函数来重构原始故障信号,计算重构信号的排列熵作为故障特征。最后采用支持向量机进行故障状态分类识别。实验结果表明,列车在各种运行速度下均能达到85%以上的分类效果,验证了该方法的有效性。