上传者: 38730331
|
上传时间: 2022-12-01 14:14:51
|
文件大小: 768KB
|
文件类型: PDF
为了改进模糊C均值聚类(FCM)算法对初始聚类中心敏感、抗噪性能较差、运算量大的问题,提出一种新的基于蚁群和自适应滤波的模糊聚类图像分割方法(ACOAFCM)。首先,该方法利用改进的蚁群算法确定初始聚类中心,作为FCM初始参数,克服FCM算法对初始聚类中心的敏感;其次,采用自适应中值滤波抑制图像噪声干扰,增强算法的鲁棒性;最后,用直方图特征空间优化FCM目标函数,对图像进行分割,减少运算量。实验结果表明,该方法克服了FCM算法对初始聚类中心的依赖,抗噪能力强,收敛速度快,分割精度高。