MATLAB 中的 11 种经典时间序列预测方法:本文列出了 MATLAB 中可用的一些经典时间序列技术,您可以在预测问题上尝试它们。-matlab开发

上传者: 38727928 | 上传时间: 2021-09-24 21:26:17 | 文件大小: 333KB | 文件类型: ZIP
机器学习实现的蓬勃发展,引起了不同行业的兴趣,将其用于时间序列问题的分类和预测。 在探索时间序列的机器学习方法之前,最好确保您尝试过经典和统计时间序列预测方法,这些方法在广泛的问题上仍然表现良好,前提是数据准备充分且方法良好配置。 在本文中,它列出了 MATLAB 中可用的一些经典时间序列技术,您可以在探索机器学习方法之前先尝试它们来解决您的预测问题。 它为您提供了每种方法的提示,以使您可以从一个有效的代码示例入手,并在哪里可以找到有关该方法的更多信息。 概述: 本文演示了 11 种不同的经典时间序列预测方法,它们分别是1)自回归(AR) 2)移动平均线3) 自回归移动平均线4) 自回归综合移动平均线 (ARIMA) 5) 季节性自回归综合移动平均 (SARIMA) 6) 带外生回归量的季节性自回归综合移动平均线 (SARIMAX) 8)具有ARIMA误差的回归模型9) 向量自回归

文件下载

资源详情

[{"title":"( 1 个子文件 333KB ) MATLAB 中的 11 种经典时间序列预测方法:本文列出了 MATLAB 中可用的一些经典时间序列技术,您可以在预测问题上尝试它们。-matlab开发","children":[{"title":"github_repo.zip <span style='color:#111;'> 333.02KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明