matlab消去振铃代码-DADIP_code:基于双注意力网络和二维模糊核估计的盲图像去模糊

上传者: 38726712 | 上传时间: 2021-06-04 21:44:33 | 文件大小: 21.53MB | 文件类型: ZIP
matlab消去振铃代码DADIP_code 介绍 在图像去模糊的问题中,在严重模糊的图像中恢复细节一直很困难。 在本文中,我们着重于有效消除去毛刺后出现的振铃伪影和皱纹,并提出了一种基于双注意力深图像先验(DADIP)网络和二维(2D)模糊核估计的卷积神经网络的新型盲去污方法网络(CNN)。 在DADIP网络中,双重关注机制首先与挤压和激励网络(SENet)结合使用,大大提高了图像细节的恢复效果。 更重要的是,开发了通过CNN的2D模糊核估计方法来抑制图像的振铃伪影,该伪影大大优于以前的基于完全连接的网络的方法。 实验表明,与大多数现有方法相比,我们的去模糊方法具有更高的性能。 要求 Python 3.6,PyTorch> = 0.4 要求:opencv-python,tqdm GPU:彩色图像至少12GB 至少3GB的灰度图像 的MATLAB 数据集 网址: 密码:mqw39a 演示版

文件下载

资源详情

[{"title":"( 34 个子文件 21.53MB ) matlab消去振铃代码-DADIP_code:基于双注意力网络和二维模糊核估计的盲图像去模糊","children":[{"title":"DADIP_code-main","children":[{"title":"images","children":[{"title":"cmp1.gif <span style='color:#111;'> 15.15MB </span>","children":null,"spread":false},{"title":"cmp2.gif <span style='color:#111;'> 6.43MB </span>","children":null,"spread":false}],"spread":true},{"title":"DADIP_lai_ycbcrpy.py <span style='color:#111;'> 5.71KB </span>","children":null,"spread":false},{"title":"networks","children":[{"title":"downsampler.py <span style='color:#111;'> 7.69KB </span>","children":null,"spread":false},{"title":"predictor.py <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"non_local_dot_product.py <span style='color:#111;'> 9.19KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"skip.py <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"unet.py <span style='color:#111;'> 7.23KB </span>","children":null,"spread":false},{"title":"non_local_gaussian.py <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"non_local_embedded_gaussian.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"non_local_concatenation.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false}],"spread":false},{"title":"DADIP_levin.py <span style='color:#111;'> 5.40KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"texture_nets.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"downsampler.py <span style='color:#111;'> 7.69KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"non_local_dot_product.py <span style='color:#111;'> 5.48KB </span>","children":null,"spread":false},{"title":"skip.py <span style='color:#111;'> 3.79KB </span>","children":null,"spread":false},{"title":"skipfc.py <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false},{"title":"unet.py <span style='color:#111;'> 7.23KB </span>","children":null,"spread":false},{"title":"non_local_gaussian.py <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"non_local_embedded_gaussian.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"non_local_concatenation.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false}],"spread":false},{"title":"utils","children":[{"title":"common_utils.py <span style='color:#111;'> 8.71KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"common_utils.cpython-36.pyc <span style='color:#111;'> 8.90KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"SSIM.py <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"DADIP_lai.py <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 66B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明