干货:用Python进行数据清洗,这7种方法你一定要掌握

上传者: 38725734 | 上传时间: 2021-02-24 14:04:31 | 文件大小: 264KB | 文件类型: PDF
数据录入过程、数据整合过程都可能会产生重复数据,直接删除是重复数据处理的主要方法。pandas提供查看、处理重复数据的方法duplicated和drop_duplicates。以如下数据为例:发现重复数据通过duplicated方法完成,如下所示,可以通过该方法查看重复的数据。需要去重时,可drop_duplicates方法完成:drop_duplicates方法还可以按照某列去重,例如去除id列重复的所有记录:缺失值是数据清洗中比较常见的问题,缺失值一般由NA表示,在处理缺失值时要遵循一定的原则。首先,需要根据业务理解处理缺失值,弄清楚缺失值产生的原因是故意缺失还是随机缺失,再通过一些业务经

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明