上传者: 38724611
|
上传时间: 2022-05-12 11:37:48
|
文件大小: 237KB
|
文件类型: PDF
为提高含噪声瓦斯浓度数据的预测精度,提出了一种基于独立成分分析(ICA)和k-最近邻(kNN)法的反向传播人工神经网络(BP-ANN)预测模型。利用滑动时间窗算法产生训练样本矩阵,采用ICA方法估计训练样本矩阵中的独立成分,用不含噪声的独立成分重新构建训练集;运用k-NN法减小训练集规模,引入混合距离测度函数降低训练过程的计算复杂度。实验结果表明,该预测模型较普通BP-ANN模型有效减小了瓦斯浓度预测误差和训练时间。