一种实用的跨域ECG生物特征识别方法

上传者: 38720461 | 上传时间: 2022-05-03 14:25:01 | 文件大小: 785KB | 文件类型: PDF
心电图(ECG)作为一种生物识别技术,对此类攻击具有较高的抵抗力并受到研究者的广泛关注。该方法的,识别率可达95%左右。然而,我们发现,当训练周期和应用周期之间存在明显的间隔时,如果将其自身的实际情况,准确率将突然降低到40%。造成这种突变的首要是:(1)在现有的训练和测试周期中,由于连续样本被用于训练和测试阶段,所提取到的特征具有时间敏感性; 2)在卷积神经网络分类中没有充分利用与性能相关的特征; 3)还没有通过设置最佳参数来为个体获得足够的多有效样本。 :1)确定随机抽样方法的最佳参数,为个体获得足够的有效样本; 2)提出一种跨时间,频率和能量域提取深度特征的方法,该方法对时间不敏感且个体区分度大; 3)在CNN中约会通道注意模块并修改其激活函数以优化识别性能。我们在PTBDB和ECG-ID数据库上验证了我们的方法。实验表明,识别精度分别达到56.93%和85.94%,比现有方法提高了41.5%和20.7%。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明