EEG情感识别中基于集成深度学习模型的多分析域特征融合

上传者: 38717896 | 上传时间: 2021-12-06 02:53:41 | 文件大小: 1.54MB | 文件类型: -
提出一种基于集成深度学习模型的情感状态检测方法.首先从脑电信号的时域、频域和时频域中提取4种表征情绪状态显著信息的初始特征;然后使用胶质细胞链改进的深度信念网络分别提取这些特征的高层抽象表示;最后利用判别式受限玻尔兹曼机对高层抽象特征进行融合,进行情感状态预测.在DEAP数据集上进行的实验显示,胶质链能够挖掘和利用EEG不同通道之间的相关性信息,而集成深度学习模型能够有效集成EEG信号在时域、频域和时频域蕴含的情感状态相关的显著性信息.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明