用于ONNX模型格式的深度学习工具箱转换器:在MATLAB中导入和导出ONNX:trade_mark:模型,以与其他深度学习框架互操作-matlab开发

上传者: 38716590 | 上传时间: 2021-12-11 16:34:29 | 文件大小: 6KB | 文件类型: -
在MATLAB内导入和导出ONNX:trade_mark:(开放神经网络交换)模型,以与其他深度学习框架互操作。 ONNX使模型可以在一个框架中进行训练,然后转移到另一个框架中进行推理。 从操作系统或在MATLAB中打开onnxconverter.mlpkginstall文件将启动您所拥有版本的安装过程。 该mlpkginstall文件可用于R2018a及更高版本。 用法示例: %%导出为ONNX模型格式净=挤压%导出的预训练模型filename ='squeezenet.onnx'; exportONNXNetwork(net,文件名); %%导入导出的网络net2 = importONNXNetwork('squeezenet.onnx','OutputLayerType','classification'); %在随机输入图像上比较两个网络的预测img = rand(net.Layers(1).I

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明