matlab底层代码-FMR:用于子空间聚类的灵活多视图表示学习代码

上传者: 38716519 | 上传时间: 2022-05-01 21:48:24 | 文件大小: 10.74MB | 文件类型: ZIP
matlab代码FMR(用于子空间聚类的灵活多视图表示学习) 这是 的 Matlab 实现,发表于 IJCAI 2019。 联系人:李瑞煌() 纸 主要贡献包括: 我们建议通过鼓励它以加权的方式与不同的视图相似来构建一个潜在的表示,这隐含地强制它编码来自多个视图的互补信息。 我们引入了内核依赖度量:Hilbert Schmidt Independence Criterion (HSIC),以捕获不同视图之间的高阶非线性关系,这有利于恢复数据的底层集群结构。 示例结果 数据 在这个例子中,我们加载了耶鲁数据集,其中包含 15 个主题的 165 张灰度人脸图像。 逃离 演示_FMR.m 引用 如果您在自己的工作中使用此代码,请引用以下论文: @inproceedings{li2019flexible, title={Flexible multi-view representation learning for subspace clustering}, author={Li, Ruihuang and Zhang, Changqing and Hu, Qinghua and Zhu, Pe

文件下载

资源详情

[{"title":"( 40 个子文件 10.74MB ) matlab底层代码-FMR:用于子空间聚类的灵活多视图表示学习代码","children":[{"title":"FMR-master","children":[{"title":"FMR","children":[{"title":"FMR","children":[{"title":"Fig1.m <span style='color:#111;'> 550B </span>","children":null,"spread":false},{"title":"KMEANS2.m <span style='color:#111;'> 194B </span>","children":null,"spread":false},{"title":"softth.m <span style='color:#111;'> 277B </span>","children":null,"spread":false},{"title":"updateH.m <span style='color:#111;'> 434B </span>","children":null,"spread":false},{"title":"SpectralClustering.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"demo_FMR.m <span style='color:#111;'> 749B </span>","children":null,"spread":false},{"title":"clustering.m <span style='color:#111;'> 225B </span>","children":null,"spread":false},{"title":"norm21.m <span style='color:#111;'> 113B </span>","children":null,"spread":false},{"title":"HSIC.m <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"tsne","children":[{"title":"x2p.m <span style='color:#111;'> 3.22KB </span>","children":null,"spread":false},{"title":"tsne_p.m <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"tsne_d.m <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"d2p.m <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"tsne.m <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false}],"spread":true},{"title":"gradient.m <span style='color:#111;'> 644B </span>","children":null,"spread":false}],"spread":false},{"title":"ClusteringMeasure","children":[{"title":"compute_f.m <span style='color:#111;'> 502B </span>","children":null,"spread":false},{"title":"Contingency.m <span style='color:#111;'> 584B </span>","children":null,"spread":false},{"title":"ConfusionMatrices","children":[{"title":"rotateXLabels.m <span style='color:#111;'> 13.63KB </span>","children":null,"spread":false},{"title":"compute_confusion_matrix.m <span style='color:#111;'> 714B </span>","children":null,"spread":false},{"title":"draw_cm.m <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"main.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false}],"spread":true},{"title":"AccMeasure.m <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"RandIndex.m <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"calculateAccuracy.m <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"compute_nmi.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"Accuracy.m <span style='color:#111;'> 97B </span>","children":null,"spread":false},{"title":"confusion_compute.m <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"bestMap.m <span style='color:#111;'> 745B </span>","children":null,"spread":false},{"title":"hungarian.m <span style='color:#111;'> 11.50KB </span>","children":null,"spread":false}],"spread":false},{"title":"dataset","children":[{"title":"yale_mtv.mat <span style='color:#111;'> 9.79MB </span>","children":null,"spread":false}],"spread":true},{"title":"LRR","children":[{"title":"solve_l1l2.m <span style='color:#111;'> 289B </span>","children":null,"spread":false},{"title":"exact_alm_lrr_l1v2.m <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"inexact_alm_lrr_l21.m <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"exact_alm_lrr_l21v2.m <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"solve_lrr.m <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"inexact_alm_lrr_l1.m <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"demo.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"img","children":[{"title":"analysis2.jpg <span style='color:#111;'> 448.71KB </span>","children":null,"spread":false},{"title":"t-SNE.jpg <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明