上传者: 38713167
|
上传时间: 2021-09-06 11:21:05
|
文件大小: 1.46MB
|
文件类型: PDF
针对未来战场感知体系的自动化和智能化的需求,设计出了一种基于深度学习的战场红外目标检测系统。近年来随着深度卷积神经网络在图像识别领域的广泛应用,因此将这项新技术应用于军事目标检测具有极强的现实意义。系统通过红外成像机芯采集红外图像,使用图像采集卡实时传输图像数据,最后在主机端利用深度卷积神经网络进行目标检测。以YOLOv3算法作为基础,以某款金属车辆模型为例,采集该型车辆的红外图像数据并制作相应的数据集,训练得到相应的检测内核。通过实验证明,检测速度可达在30 帧/秒以上,且在fps达到30的前提下平均识别精度达到70%以上,不仅具有很好的实时性、准确性,对各种环境变化具有较好的鲁棒性,验证了该系统的可行性和军事应用价值。