主成分回归代码matlab及例子-machine-learning-r:R中的机器学习

上传者: 38713009 | 上传时间: 2022-07-07 08:23:39 | 文件大小: 85KB | 文件类型: ZIP
主成分回归代码matlab及示例R中的机器学习 这是我在机器学习期间开发的R脚本的存储库。 一些代码已从其原始Matlab实现中进行了改编并转换为R。 分类 欧几里得(euclidean_classifier) Mahalanobis(mahalanobis_classifier) 感知器(perceptron_classifier) 在线感知器(online_perceptron_classifier) Sum-Squared错误(sse_classifier) 回归 绘制数据和(regression_plot) 绘制回归决策边界(regression_boundary) 通用回归包装函数(regression_optimize) 线性回归 线性回归成本函数和梯度(lr_cost) 线性回归梯度下降(lr_gradientdescent) 逻辑回归 Logistic回归成本函数和梯度(logr_cost) 逻辑回归优化器(logr_optimize) 预测(logr_predict) Softmax回归 Softmax回归成本函数和梯度(softmax_cost) Softmax回归

文件下载

资源详情

[{"title":"( 32 个子文件 85KB ) 主成分回归代码matlab及例子-machine-learning-r:R中的机器学习","children":[{"title":"machine-learning-r-master","children":[{"title":"SupportVectorMachine","children":[{"title":"svm_data.R <span style='color:#111;'> 713B </span>","children":null,"spread":false},{"title":"svm.R <span style='color:#111;'> 11.04KB </span>","children":null,"spread":false},{"title":"smo.R <span style='color:#111;'> 33.47KB </span>","children":null,"spread":false},{"title":"svcplot.R <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"sampleX.txt <span style='color:#111;'> 14.98KB </span>","children":null,"spread":false},{"title":"sampleY.txt <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"AnomalyDetection","children":[{"title":"AnomalyDetection.R <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"Miscellaneous","children":[{"title":"misc.R <span style='color:#111;'> 598B </span>","children":null,"spread":false}],"spread":true},{"title":"Regression","children":[{"title":"sampleTheta.txt <span style='color:#111;'> 4B </span>","children":null,"spread":false},{"title":"logistic_regression_sampleX.txt <span style='color:#111;'> 56.15KB </span>","children":null,"spread":false},{"title":"logistic_regression_sampleTheta.txt <span style='color:#111;'> 56B </span>","children":null,"spread":false},{"title":"sampleX.txt <span style='color:#111;'> 674B </span>","children":null,"spread":false},{"title":"regression.R <span style='color:#111;'> 11.28KB </span>","children":null,"spread":false},{"title":"sampleY.txt <span style='color:#111;'> 685B </span>","children":null,"spread":false},{"title":"logistic_regression_sampleY.txt <span style='color:#111;'> 236B </span>","children":null,"spread":false}],"spread":true},{"title":"Classification","children":[{"title":"classifiers.R <span style='color:#111;'> 4.33KB </span>","children":null,"spread":false},{"title":"sample_perceptronW.txt <span style='color:#111;'> 9B </span>","children":null,"spread":false},{"title":"sample_perceptronX.txt <span style='color:#111;'> 7.09KB </span>","children":null,"spread":false},{"title":"sample_perceptronY.txt <span style='color:#111;'> 500B </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"Features","children":[{"title":"FeatureNormalization.R <span style='color:#111;'> 545B </span>","children":null,"spread":false}],"spread":true},{"title":"PrincipalComponentAnalysis","children":[{"title":"pca.R <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"CollaborativeFiltering","children":[{"title":"CollaborativeFiltering.R <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"Clustering","children":[{"title":"sampleX.txt <span style='color:#111;'> 9.97KB </span>","children":null,"spread":false},{"title":"clustering.R <span style='color:#111;'> 13.68KB </span>","children":null,"spread":false},{"title":"kmeans.R <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false}],"spread":true},{"title":"NeuralNetwork","children":[{"title":"AdvancedNeuralNetwork.R <span style='color:#111;'> 12.03KB </span>","children":null,"spread":false},{"title":"nnet_conv.R <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"DeepNeuralNetwork.R <span style='color:#111;'> 12.14KB </span>","children":null,"spread":false},{"title":"fmincg.R <span style='color:#111;'> 8.09KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明