多元统计分析在非高斯过程故障诊断中的应用

上传者: 38709312 | 上传时间: 2022-11-13 21:34:54 | 文件大小: 556KB | 文件类型: PDF
传统的多变量分析(MVA)故障诊断方法通常要求分离的采样数据潜在变量必须服从正态分布,这通常很难满足实际的工业过程。 本文首先介绍了一种基于Q统计量的故障诊断方法。 它要求采样数据必须服从正态分布。 然后介绍一种基于信息增量矩阵(IIM)的故障诊断方法,该方法的采样数据不受正态分布的限制。 该方法主要由定义协方差矩阵,计算信息增量矩阵,信息增量均值和动态阈值等组成。 最后,给出了一个数值模拟的例子和一个田纳西州的伊斯曼过程的例子,以验证两种错误诊断方法,即Q统计量和IIM,在误报和漏报中的检测性能。 结果表明,在采样数据不服从正态分布的情况下,Q统计方法的检测性能较差,而基于IIM的故障诊断方法较好。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明