基于改进Bayesian-MCMC的突发水污染事件预测模型参数率定方法

上传者: 38708945 | 上传时间: 2021-10-29 21:56:43 | 文件大小: 3.72MB | 文件类型: -
预测模型是科学制定应急处置措施的基础.为快速准确地构建突发水污染事件预测模型,将预测模型参数的率定问题视为贝叶斯估计问题,并根据有限差分方法和贝叶斯推理得到参数的后验概率密度函数,再通过改进的Metropolis-Hastings抽样方法得到较为合理的参数值.以发生在某明渠段的突发水污染事件为例,分析讨论等容量控制非均匀流和非等容量控制非均匀流两种情景下不同观测噪声对参数率定值的影响,并与由贝叶斯-马尔科夫链蒙特卡罗方法得到的参数值和真实值进行对比.结果表明:改进Bayesian-MCMC方法在计算精度、适用性和抗噪声等方面优于贝叶斯-马尔科夫链蒙特卡罗方法,能较好地率定模型参数,并为构建突发水污染事件预测模型提供了新思路.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明